Podcasting since 2005! Listen to Latest SolderSmoke

Showing posts with label homebrew. Show all posts
Showing posts with label homebrew. Show all posts

Wednesday, January 15, 2025

Ugly and Manhattan Construction from Popcorn Electronics


Todd (oops, I mean Vasily) has a really nice video on Ugly and Manhattan construction techniques on his re-born Popcorn Electronics site.  See above for the video.  The site's URL is https://qrp-popcorn.blogspot.com/

Some people apparently dislike these techniques.  To each his own, but I like the Manhattan method.  In fact, in the SolderSmoke Direct Conversion project, we are recommending the use of Manhattan circuit board tecniques.  With Manhattan, you get a lot flexibility.  At one  point, for example, the High School students told us that they had forgotten to put a needed pad on the board.  No problem!  Just glue in a new one.  Or if you put in one too many, just take one off.  

You also keep all the circuitry and all the connections on one side of the board.  This facilitates repair or modification.  This kind of thing is not so easy when you have components on one side of the board and the connections on the other side.  You spend a lot of time flipping boards over, breaking wires,  trying to remember what goes where.  Also, because the pads push the connections a couple of millimeters above the ground plane, I find that Manhattan technique actually reduces the chances for an accidental short to ground. 

There has been some discussion of where the term "Manhattan style" comes from.  Having been born on Manhattan island, I too wonder about the origin of the term.  Some see it as the result of the grid pattern (like Manhatten's street grid) that results from the rectangular or square pads that are often used.  Others point to the vertical parts placement that we see when looking at a board from the side -- the parts look like the skyline of Manhattan.   Either explanation, I think, works.  

Here is a Manhattan-style board I recently built in the Dominican Republic for my homebrew 15-10 meter SSB transceiver. I couldn't find any Gorilla glue here, so I went with Loctite Coqui. Same stuff.   Latin American super glue! 

Monday, January 13, 2025

SolderSmoke Direct Conversion Challenge -- Video #1

This is the first in a series of videos and postings on the SolderSmoke Direct Conversion Receiver challenge.  Dean, KK4DAS takes us through an overview of the project.  He covers the architecture of the receiver, construction techniques, component sourcing and selection and generally sets the stage for the build.  Future videos will cover each board in detail.

 

We are very excited invite you to join the SolderSmoke Discord server.  This is an experiment to see if Discord is a good forum for SolderSmoke listeners to interact with us and each other on topics of interest.  For now, we will be used Discord exclusively for discussion of the DCR challenge.   To join the SolderSmoke Discord server click on the link below.

 

Links and references:

 

     Join the discussion - SolderSmoke Discord Server

     https://discord.gg/XMScV9HT

     Documentation on Hackaday

      High Schoolers Build a Radio Receiver | Hackaday.io

     SolderSmoke YouTube channel

      SolderSmoke -- Homebrew Ham Radio - YouTube

     SolderSmoke blog

      https://soldersmoke.blogspot.com/search/label/TJ%20DC%20RX

SolderSmoke Podcast #256: HNY SKN, LA Fires, Barkhausen! Southern Cross, Homebrew vs. Kits, AN762 Kit, Woe, Beacon, ARRL Kids, SDR Build, DC RX videos, Pete Hacked! Power alternatives, KWM4, Mailbag

A Tale of Woe! 

SolderSmoke Podcast #256 is available: 



Travelouge
:  From the DR.  

Happy New Year! 

Fires in LA.  

Dean:  Breaking the Barkhausen criteria.  

Seeing the Southern Cross for the first time in 30 years. 

For all three of us:  The SolderSmoke Homebrew Challenge.  And assembling a kit. https://soldersmoke.blogspot.com/2025/01/some-history-of-homebrew-ham-radio-from.html

https://soldersmoke.blogspot.com/2025/01/the-magic-that-only-comes-from-radio.html

https://soldersmoke.blogspot.com/2025/01/steve-g0fuw-talks-homebrew-and-kits.html

________________________________

Bill's (Southern) Bench: 

-- SKN with QCX given to me by Bob.  Thanks Bob! 

-- Finishing up the AN762 .1kW amplifier.  Socketry and relays.  Working well.  

-- A tale of woe:  Some difficult troubleshooting on the 15-10 rig. Intermittent oscillation.   Naturally I blamed the TJ DC RX AF amp.  Spent a lot of time working on that amplifier.  But problem always returned.  Started looking at output from carrier osc/BFO.  Waveform weird. Then weirdness disappeared and so did the whooping.  So I rebuilt the entire carrier osc/BFO/ mixer board.  Went back to singly balanced 2 diode mixer.  Used LTSpice for the oscillator amp.. No more whooping.  Turning the diodes on and off  but not quite 7 dbm...  Should I be concerned? 

-- A 10 meter beacon!  28.233   Please listen. Send e-mail reports.   Thanks to WN2A.   

-- Antenna thoughts.  Getting a tripod.  

The HI7/N2CQR 10 meter Beacon

_______________________________

SHAMELESS COMMERCE!   Mostly DIY RF!  Lots of useful kits and boards there.  I have used their TIA boards.  Todd K7TFC is one of us.  FB store. 

Become a SolderSmoke patron.  We need the help.  Homebrew is under seige!  We are one of the few sites, blogs, podcasts that are promoting it!  Help us!  

Buy stuff from Amazon and E-bay using the links on our sites. 

------------------------------------------------

Dean's Bench: 

-- ARRL kids day -- Exhausting.

-- VWS Makers SDR receiver build.  

-- High School DC RX Build news. How to watch the videos.  

_______________________________

Pete's Bench:  

-- Hacked! 

-- Power Alternatives. 

-- Thermatron Finals

-- KWM-4. 

__________________________

Mailbag

Dave Newkirk W9BRD (son of Rod).  Great comments on homebrew radio. And a great picture. 

Derek N9TD built the DC Receiver.  FB Derek! 

Peter VK2EMU at 39C in Australia.  HOT! 

Drew N7DA -- Some great comments on kits vs. homebrew. 

Tommy SA2CLC has a nice video about fixing the cavity resonator in his HP8640.  Respect! 

Ben KC9DLM sent good presentation from India: https://github.com/kholia/talks/blob/master/Dhiru_My_RF_Homebrew_Adventures.pdf

Scott KQ4AOP and Derek N9TD offering to 3D Print PTO coil forms.  FB!  

Donnie WA9TGT on the beautiful signals from DC receivers. 

Chuck KE5HPY's FB Altoids DC receiver

Todd VE7BPO:  POPCORN ELECTRONICS IS BACK!  Thanks Todd.  And thanks Vasily! 

Jim KA4THC has his uBITX on the air and is making contacts!  

Farhan VU2ESE fond memories of homebrew dinner with Wes and other HB Heroes (on the blog). 

Charlie ZL2CTM -- About his new Pelican Case SSB rig. 

Walter KA4KXX.  All new hams should build a transmitter. 

Buzz W3EMD  A nice QSO on 10 and then a shout out to the Old Military Radio Net

Stations that heard my beacon and reported to RBN

Sunday, January 12, 2025

Some History of Homebrew Ham Radio -- From Wikipedia and from K0IYE

Frank Harris K0IYE's Homebrew Station

From Wikipedia:  https://en.wikipedia.org/wiki/Amateur_radio_homebrew 

In the early years of amateur radio, long before factory-built gear was easily available, hams built their own transmitting and receiving equipment, known as homebrewing.[2] In the 1930s, 40s, and 50s, hams handcrafted reasonable-quality vacuum tube-based transmitters and receivers which were often housed in their basements, and it was common for a well-built "homebrew rig" to cover all the high frequency bands (1.8 to 30 MHz). After WWII ended, surplus material (transmitters/receivers, etc.), was readily available, providing previously unavailable material at costs low enough for amateur experimental use.[3]

Homebrewing was often encouraged by amateur radio publications. In 1950, CQ Amateur Radio Magazine announced a ‘‘$1000 Cash Prize ‘Home Brew’ Contest’’ and called independently-built equipment ‘‘the type of gear which has helped to make amateur radio our greatest reservoir of technical proficiency.’’ The magazine tried to steer hams back into building by sponsoring such competitions and by publishing more construction plans, saying that homebrewing imparted a powerful technical mastery to hams. In 1958, a CQ editorial opined that if ham radio lost status as a technical activity, it might also lose the privilege of operating on the public airwaves, saying, ‘‘As our ranks of home constructors thin we also fall to a lower technical level as a group’’.[4]

In the 1950s and 60s, some hams turned to constructing their stations from kits sold by HeathkitEicoEF JohnsonAllied Radio's Knight-KitWorld Radio Laboratories and other suppliers.[5]

From "From Crystal Sets to Sideband" by Frank Harris K0IYE https://www.qsl.net/k0iye/

Dear Radio Amateur,

 I began writing this book when I realized that my homebuilt station seemed to be almost unique on the air. For me, the education and fun of building radios is one of the best parts of ham radio. It appeared to me that homebrewing was rapidly disappearing, so I wrote articles about it for my local radio club newsletter. My ham friends liked the articles, but they rarely built anything. I realized that most modern hams lack the basic skills and knowledge to build radios usable on the air today. My articles were too brief to help them, but perhaps a detailed guide might help revive homebuilding. I have tried to write the book that I wish had been available when I was a novice operator back in 1957. I knew that rejuvenating homebuilding was probably unrealistic, but I enjoy writing. This project has been satisfying and extremely educational for me. I hope you'll find the book useful...

...My personal definition of “homebuilding” is that I build my own equipment starting from simple components that (I hope) I understand. I try not to buy equipment or subassemblies specifically designed for amateur radio. I am proud to be the bane of most of the advertisers in ham radio magazines. I still buy individual electrical components, of course. I just pretend that the electronics industry never got around to inventing radio communications. 

An irony of our hobby is that, when the few remaining homebrewers retire from their day jobs, they often build and sell ham radio equipment. These industrious guys manufacture and sell every imaginable ham gizmo. I doubt any of them have noticed that, by making everything readily available, they have discouraged homebuilding.

Friday, January 10, 2025

"The Magic That Only Comes from a Radio you Built Yourself" -- The Many Benefits of True Homebrew

 Receiver on the bottom,built around 1997. 
Transmitter upper right, built in 1993. Power supply upper left, 1998.  


Adventures on the road to HB

Homebrew Radios in the age of the Internet

By Bill Meara, N2CQR


MAGIC

"I listened to the magic that only comes from a radio that you built yourself." In that one sentence (posted to an Internet e-mail group), Mike, VE2GFU, nicely described the feeling that can arise in the midst of a room full of solder smoke... and the reward that awaits those who endeavor to build their own radio receivers. In an age of mass produced, homogenized, high price commercial equipment, there is still magic to be found in the production and use of simple homebrew radios. I recently put together my first superhetrodyne communications receiver - I had so much fun with it that I thought my fellow amateurs might be interested in the project.

I was a frustrated teenage radio builder....

When I put my first homebrew low power transmitter on the air a few years ago, I thought I'd maximized my ham radio satisfaction. I gleefully reported to other stations that "RIG HERE IS HOMEBREW". For a while, I really thought that my fun meter was pegged! But everytime I looked at the commercial receiver that sat alongside my QRP transmitter, I knew in my heart of hearts that I still had some work to do. The truth was that only half my station was homebrew. Until I built my own receiver, I would not be able to enjoy the warm glow of satisfaction that comes from running a completely homebrew station. As a kid, I'd always looked with wonder and envy at the exotic homebrew stations in the DX column of QST magazine. I wanted to do what those intrepid foreigners had done. I decided to finish the job. I decided to build a receiver.

"Receivers are Difficult!!!"

I approached the project with some trepidation. Since my earliest days in the hobby I'd heard that "receivers are difficult." There seemed to be a deeply believed and long-standing bit of conventional wisdom that said that most hams could sucessfully build transmitters, but receivers were somehow beyond our capabilities. During radio club meetings, old timers would share tales of homebrew adventures from days-gone-by. They told of tube transmitters built on chassis fashioned from purloined street signs. There were a lot of great stories, but they were all about transmitters. When I'd ask about receivers, the old timers would look a bit sheepish as they admitted that their receivers were all commercial.

Receivers are difficult. I knew from personal experience that there was some truth in this axiom. As a teenager I had tried to barge into the ranks of the homebrewers with an audacious attempt at reproducing a varactor diode-controlled receiver I'd seen in one of the ham magazines. I never got it to work. As I approached this recent receiver project, I think a desire for vindication - and a desire to finish the job I started in 1974 - was part of my motivation.

Barebones, no frills, one step at a time

The "Barebones Superhet" presented in a July 1982 QST article by Doug DeMaw seemed to be just what I was looking for. As the title imples, it is a very simple, easy-to-understand circuit. Most of the stages were built around discrete solid state components - no mysterious IC black boxes. 

Remembering my bitter defeat in my earlier receiver project, I decided to take a fool-proof approach to this one. I took Doug DeMaw's very simple schematic and made it even simpler by dividing it up into separate stages. I would build each stage one at a time, each on a separate printed circuit (PC) board. For my receiver there would be separate boards for the Radio Frequency Mixer, the Variable Crystal Oscillator (VXO), the intermediate frequency (IF) amplifier, one board for the Product detector/beat frequency oscillator (BFO) and one audio amplifier board. I would test each stage before going on to the next.

Parts acquisition in the age of the Internet

As a teenage wanna-be radio maker, parts acqusition had been a major problem. I'm happy to report that the Internet and Express mail services have largely eliminated the tortuous "waiting for the mailman" vigils that many of us endured back in the dark ages. I kicked off my project with a brief session involving several parts catalogs, my computer and a credit card. A few short days later, the boxes started coming in and actual construction was about to begin.

While the catalog houses provided many of the parts, my junk box, hamfests and fellow hams were the sources for many of the components. I think that this diversity of parts sources adds to the character of the final product. When I look at my receiver, I can see parts that came from my old friend (now SK) Pericle, HI8P. There are components in there that were sent to me by Tom, W1HET and several other ham friends. There is a reduction drive from an old Swan 240 and a grommet from a deceased Heathkit Luchbox. The LM386 audio amplifier chip (a concession to modernity!) came out of a Kanga Kits direct conversion receiver; I didn't have an eight pin socket for it, so I scrounged through my junk box, found a 16 pin socket and cut it in half. Like I said, this approach to parts acquisition gives the radio some character. 

Lunch time PC board design

My "one stage at a time" approach resulted in some special challenges and opportunities. I had to design the PC board patterns myself. For hams accostomed to using ready-made PC boards, or simply reproducing patterns made by others, this might seem like an intimidating task, but since I was dealing with only one stage on each board, it turned out to be easy and rewarding. I was using boards that fit very conveniently in the front pocket of my shirts. I made PC board design a lunch-hour project. I would go to work with my schematic and a couple of index cards in my pocket. I'd cut the cards down to PC board size and used them to plan the layout of the boards. I usually had to do two or three "drafts" before I was satisfied, but I found that I was able to do about one board per lunch hour. Doing the layout myself definitely added to the "I did it myself" feeling at the end of the project.

I set a goal of completing one board per week - most of the design and planning would take place during the lunch hours, most of the construction took place early on Saturday and Sunday mornings.

Testing, testing....

My arsenal of test gear is far from laboratory grade! I have a little (ancient) Eico 435 oscilliscope and an old Heathkit signal generator. I bought the scope for 25 dollars on the Internet. The generator was a 15 dollar hamfest purchase. The 'scope will only read up to about 5 Mhz, but since the IF of my receiver would be 3.579 Mhz, I knew it would be very useful.

Testing the stages was a lot of fun. The VXO and BFO were easy to test - I just listened for the signal on a Radio Shack general coverage receiver. For the IF AMP I used the signal generator to put some 3.579 Mhz energy into board and used the 'scope to make sure it was amplifying.

One of the most difficult parts of HF superhet construction is the IF filter. Doug DeMaw's circuit employed a three crystal ladder filter. Doug described it as simple and easy, but to me it looked a bit intimidating. One of the benefits of homebrewing is that you can really "have it your way". Wishing to avoid a frustrating battle with a complicated filter, I searched through the QRP/Homebrew literature for a simpler approach to IF filtering. I found what I was looking for in another article by DeMaw. In this cicuit he used one crystal with a resistor to ground. I decided to use this simple filter and put off construction of the more sophisticated (and narrow) three crystal circuit until later.

So I redesigned the RF mixer board to accomodate my simplified filter. I wasn't quite sure if this little foray into electrical engineering would be successful (my degree is in economics!) so the testing of this stage was tinged with some anxiety. I set the signal generator for the low end of the 20 meter band. I got the VXO oscillating and put the scope on the output of my simple filter. Slowly I tuned the generator across the 20 meter CW band. All of a sudden, at one very specific point, a big 3.579 Mhz signal popped onto the 'scope screen! Eureka! My mixer was mixing and my filter was filtering!

Holy cow! It really works!

After about a month and a half of this, I had assembled an impressive looking collection of small circuit boards. I couldn't resist putting them all together on the workbench to see if this thing would really receive. Armed with a set of alligator clip test leads I connected inputs to outputs. It was early in the morning and 20 wasn't really open yet, but it was Saturday and I figured there were some folks out there trying to coax the ionosphere into action. As I was checking the test leads, I started to hear - almost imperceptiably at first - CW. At first I thought the sound was coming from my Drake 2-B, but a quick check showed the Drake was completely off. My little creation was actually receiving radio signals!

As late afternoon rolled around I decided to see how my still incomplete device would handle SSB. As luck would have it, my crystal let me tune around 14.200 Mhz. There I found the very melodious tones of EA3OT. Echo Alfa Three Oooold Timer, with his "six over six over six" antenna system filled my shack with beautiful phone signals. My relatively wide, one crystal filter was ideal for reception of Mike's fine signal. There really was something quite magical about looking at my little collection of boards and realizing that they were receiving signals from far-away Barcelona. I was experiencing "the magic that only comes from a receiver that you built yourself..."

Enclosure (sort of)

Now it was time to start putting the radio in a proper enclosure. A few years ago, Paul Carr, N4PC, * (*Described in several editions of the CQ magazine during 1993) built a 40 meter solid state rig on a wooden base. Disliking metal work, I immediately appreciated the wisdom of this approach. Realizing that I'd probably want to add additional circuits later on, I decided to make the chassis about twice the size I really needed. A visit to Home Depot yielded a suitable (16"X11") piece of pine. I also picked up some very light sheet metal that I thought would help with the front panel.

I had three large double sided PC boards in the junk box. The circuit boards were attached to these PC "base" boards with some Radio Shack spacers and 4X40 screws. The Base boards were bolted to the wooden base.

I used the sheet metal to fashon an L shaed front panel. The material was not quite rigid enough, so (in keeping with a very old ham tradition of stealing radio materials frm the kitchen) I put a little "cookie baking sheet" between two layers of the Home Depot sheet metal. The L shaped panel was afixed to the pine base. A smaller L shaped piece of scrap aluminum was attached to the back side of the pine chassis - this would serve as the mounting point for the antenna and power connectors.

My creation was starting to look like a radio. Better yet, it resembled one of those impressive homebuilt rigs that I used to see in the DX column of QST. I felt I was getting close to membership in the that elite group of intrepid hams who had actually "rolled their own." I was starting to feel a kinship with all of those intrepid, creative wackos who build things in their basements or garages. I felt part of the same homebrew tradition that dates from in the early days of ham radio. Just like the guys who build small airplanes in their backyard shops, just like those guys in California's Homebrew Computer Club, I was approaching the point when I could begin sentences with the proud phrase, "I built..."

Debugging

But of course, I was not done yet. Not by a long shot. When you are homebrewing, you have to be patient. You have to start out realizing that you are definitely not involved in "plug and play" radio.  Very few homebrew receivers will work properly the first time you fire them up. The radio needs to be properly aligned. Amplifiers and oscillators need to be tamed. But I think this is one of the most satisfying part of the homebrew experience. It is during this phase that you really get the sensation that you are molding your creation to satisfy your requirements. You are physically molding it by deciding where you want the control knobs and external connectors. And (even better) you are molding it electronically by deciding how you want to to sound. It is during this phase that you really put electronic theory to work.

I had a few very common problems. My audio amplifier would scream like a banshee if I turned the gain up. My variable crystal oscillator was kind of sluggish - it sometimes wouldn't start up right away when I applied power. A preacher from the 22 Meter broadcast band urged me to repent every time fired up my new radio. And worst of all, 80 meter CW signals from the venerable W1AW jumped right over my receiver's front end filters, landing right in my 3.579 Mhz IF frequency. These signals not only appeared to be mocking my technical abilities, but they also seemed to be making fun of my code speed.  Like I said, this was definitely not plug and play.

In my effort to fix these problems, modern technology provided me with resource that was completely unavailable during my earlier (1974) battle with a superhet: the Internet. The 'net puts the radio builder in almost instantaneous contact with a worldwide network of entusiastic solder melters. I found the rec.radio.amateur.homebrew USENET group to be an excellent source of information, advice and moral support.

The internet can turn your homebrew project into a multinational enterprise. Hams from around the world chimed in with helpful hints. It was a lot of fun to encorporate suggestions from distant Australia into my little HB receiver. And it was very reassuring to know that all those far-flung Elmers were available if I got into a real jam.

I was particularly gratified when I got some e-mailed words of encouragement from the guy who had designed the receiver I was building, Doug DeMaw, W1FB. Doug's son had spotted one of my pleas for help in one of the USENET groups and had relayed my message to his father. Doug sent me a very nice and encouraging note. I was saddened to learn that shortly after our exchange he became a silent Key.

Solutions to most of my problems came very quickly - and I learned something with each of them.

The screaming banshee audio amp turned out to be the result of a simple circuit error - I'd failed to ground one of the bypass caps on the LM386 AF amp chip (the only IC in the rig).

The Variable Crystal oscillator was made more obedient by playing a bit with the values of the two capacitors that madeup the feedback network in the Colpitts oscilator.

The preacher and W1AW required a little more effort. I decided that I needed a bit more filtering at the front end of the radio. I could have easily just thrown in one or two more tuned circuits between the antenna and the mixer, but I was concerned that losses in these circuits would adversely affect receiver sensitivity. Roy Lewllan, W7EL, had advised me (via the net) to perform a simple check of receiver sensitivity: I was told to listen to the receiver output while connecting and disconnecting the antenna. If connecting the antenna resulted in a noticeable increase in the noise output of the receiver, there would be no need for additional front end amplification. My receiver was not really doing well on this test, so I was concerned that adding more tuned circuits at the front end would worsen the sensitivity problem. It seemed to me that a stage of RF amplification that included a couple of tuned circuits might help me banish the unwanted preachers and code practice sessions without further degradation of receiver sensitivity.

Doug Demaw's QRP Notebook pointed to a simple, grounded gate FET amplifier with tuned circuits at the input and output. I quickly put this stage together on its own small PC board and put it between my antenna connection and the mixer board. The amp was obviously amplifying, but it seemed to be getting carried away. Whenever I'd tune both the input and output circuits to peak, the amp would begin to oscillate. I turned to the Internet and aske for advice. Help quickly came from afar. A fellow named PK Singh sent me an email with the solution: I had to "tap down" on the toroidal coils in the two tuned circuits. This deliberately introduced impedence mismatches that effectively reduced the stage gain and thus stopped the howling. (A side benefit was a noticeable increase in tuned circuit Q - a big help in my battle with the 22 Meter station). With the tapped down amp in the circuit, my receiver passed Roy Lewellan's noise test with flying colors and I was no longer the subject of harrassment from 22 meters and W1AW. Viva el Internet!

Coffee can frequency readout

My frequency readout scheme needed some work. The tuning capacitor I was using had a little venier reduction drive built into the cap. This made for very smooth tuning, but it made it impossible to work out any kind of frequency readout on the front panel. I had to peer over the panel and look at the variable capacitor to determine where I was in the band. In an age of multidecimal numeric digital readout, I was clearly behind the times.  And my neck was starting to bother me. 

To upgrade, I found a junkbox 365 pf variable cap with no built in reduction drive. This was about twice the capacitance that I needed, so I simply plucked out about half of the rotor plates. I also found a Johnson 6:1 reduction drive in a junker Swan 240 transceiver. With a piece of scrap aluminum, I engineered a little mount for the capacitor. The Johnson drive allows for the attachment of a frequency readout dial. I found that the top of a coffee can (the metal part you always throw away) was ideally sized for my front panel. Soon I had the modified cap, reduction drive and coffee can readout dial mounted on the front panel. A triangular piece of electrical tape provided a sharp looking pointer. A few pieces of masking tape on the coffee can top served as frequency markers. I realize that my "coffee can readout" will seem incredibly crude to those accostomed to glowing numerals, but I get a real kick out of it every time I spin that little homebrew mechanism.

Filter Finale

In a certain sense I was done. I was able to pair my new receiver with my QRP transmitter and was easily able to make QSO's. I was working European stations regularly with 3 watts out. But my simplified crystal filter was a too wide for serious CW work. I could hear several CW signals simultaeously and - worse yet - I could hear the "other sideband" on the stronger signals. So I hadn't really achieved the coveted "single signal reception" status that is - after all - one of the main reasons for going the superhet route.

There are a number of excellent article out there on the design of CW crystal ladder filters. Unfortunately the building of these filters requires the use of some special test gear to determine the electrical charecteristics of the particular crystals that will be used.

Wishing to avoid the construction of test gear that would be more complicated than my radio, I decided to simplify filter construction. I bought a bag of 50 3.579 Mhz TV color burst crystals from Dan's Small parts. I then built a simple Colpitts oscillator circuit on a Radio shack breadboard. I tuned my Drake 2-B receiver to 3.579 Mhz and started plugging crustals into my breadboard oscillator. I screened out those rocks that were signficantly off frequecncy, then I went through the pile again, judging by ear (using the tone from the Drake 2-B) to select three crystals that were very close in frequency. (I know that a frequency counter would have made this easier, but I don't have one so I had to "make do.")

I simply pugged these crystals into the filter circuit described in Doug DeMaw's 1982 article. Essentially I was "hoping for the best", hoping that the characteristics of my rocks would not be significantly different from those employed by Doug DeMaw.

It all worked out very well. The new filter significantly sharpened my receiver's selectivity. I could no longer hear strong signals at two points on the dial. Single signal reception had been acheived!

My filter proved to be far to sharp for confortable SSB reception, so I worked out a little switching arrangment that allowed me to switch between my original (wide) filter and the new, sharp CW filter. MISSION ACCOMPLISHED

I found that my technical skills improved dramatically during the course of this project. I even noticed a marked impovment in manual dexterity. By the time the receiver was finished, I was much more confident about putting together my own circuits. In order to be truly "100 percent homebrew", I needed to whip up a power supply for my station and a sidetone oscillator for my transmitter. These projects were quickly completed and I was soon on the air with a 100 percent HB station.

Homebrew is good for you! It really doesn't matter what band or mode you build for, a homebrew radio will provide a kind of satisfaction unavailable from store-bought units. A project like this will improve your skills, expand your knowledge and will put you in league with all of those intrepid inventors who have turned piles of parts and wires into devices that magically extract signals from the ether.

-----------------------------------

More details on this homebrew rig here: https://soldersmoke.blogspot.com/2022/09/fixing-up-old-homebrew-rig-barebones.html


What Homebrew Looks Like (And W9BRD comment on the High School receiver project)

Clikc on the picture for a clearer view of this fantastic image

Dave Newkirk is the son of Rod Newkirk, the guy who wrote the inspirational "How's DX?" column for QST for so many years.  Dave is obviously a very prolific and proficient homebrewer himself.  I really appreciate his comment on the High School receiver project.  Thanks Dave. 

Dave wrote on QRZ.com: 

Rummaging around the net for such phrases as "TJ receiver" or variations that include AA1TJ and receiver returns no solid hits, but by following clues I found a/the article with schematic at https://hackaday.io/project/190327-high-schoolers-build-a-radio-receiver. That's a well-thought-out design that'll provide fun, fun, fun.


I think I have something like 8 homemade receivers available at the moment at W9BRD, tube-based and solid-state, regenerative and superhet. all told covering 160 through 17 meters (if I include my tube-based and solid-state converters), and about the same number of homemade transmitters. With some exceptions for particular on-air celebrations and events, commonly my entire station lineup is homemade from stem to stern, so to speak.

I've been building radio gear since 1968. Here's some recent fun:

Zed thread covering the development of a converter-plus-regenerative-tuner combo that I came to call the "Super 3-in-9":

https://forums.qrz.com/index.php?th...ceiver-using-one-9-pin-miniature-tube.897249/

Zed thread covering construction of my version of a coffee-can-based receiver/converter combo my father used for 15ish years as his main station receiver after beginning its construction in 1951ish "on a kitchen table in Hartford" while working at ARRL HQ:

https://forums.qrz.com/index.php?th...building-a-160-meter-coffee-can-regen.938709/

To which discussion our own @N2EY kindly posted the mid-1960s "How's DX?" lead in which Dad laid out his station design/configuration/construction philosophy ( https://forums.qrz.com/index.php?th...0-meter-coffee-can-regen.938709/#post-7021505 ).

To us, commercial/mil/pro gear has been and always will be various shades of inspiring to fabulous, but only with homemade gear are we home.

A little Night Radio Romance at W9BRD, featuring the BRD-160CC 160-m regenerative receiver and converter (transmitter and antenna tuner not shown). 

Tuesday, January 7, 2025

Steve G0FUW talks Homebrew and Kits with Charlie NJ7V

Our homebrew direct-conversion receiver challenge (see below) has led to a discussion of the differences between homebrew and kits.  Our intent in designing this rig was to come up with something that was simple enough to actually homebrew (that is the challenge:  homebrew it!) .  Building it from a kit would be something different.  I like the way Charlie and Steve talk about the differences between homebrew and kits in this video.  Around 33:49 Charlie mentions that after a while you just get good at building kits.   Steve points out that building kits is a bit like "painting by numbers" (a great metaphor).  Steve then goes on to talk about the formation in G-QRP of the "scratch-built group." Steve tells us that he has built some 84 radios.  Steve talks about "the joy of building it yourself" (43:49)

Steve gives a very kind shout out to SolderSmoke at around 23:58.    The references to Tony G4WIF and Ian G3ROO were also very nice. And there are many great mentions of Pete Juliano N6QW. 

And remember:  If you are not a member of G-QRP you are just wrong!  Join here:  https://www.gqrp.com/join.htm 

Thanks Charlie and thanks Steve! 

------------------------------------

November 13, 2024

Bill's appearance on the Ham Radio Workbench.  (Bill made some overly harsh comments about radio rejuvenation, and was trying to make amends.)  But now we throw down the gauntlet.  WE CHALLENGE the HRWB guys to build -- to homebrew - our TJ DC RX.  They will experience JOO, JVO and the elite status that comes with having built their own ham radio receiver.  And if they go on to build a 10 minute transmitter, they can use it for CW contacts.  Like on POTA (Thomas!)

December 13, 2024: 

Bill was on Ham Radio Workbench: https://soldersmoke.blogspot.com/2024/11/bill-n2cqr-appears-as-guest-on-ham.html  Our challenge to HRWB.  Gauntlet thrown down... OUR CHALLENGE HAS BEEN GRACIOUSLY ACCEPTED!     We now extend the challenge to the entire SolderSmoke community: Build one of these:  https://hackaday.io/project/190327-high-schoolers-build-a-radio-receiver

Homebrewing is not for the faint of heart!  Accept the challenge!  Build stuff! 


Tuesday, December 3, 2024

Pil Joo's Homebrew Superheterodyne Ham-Radio Receiver


It is just very cool to see someone build a superhet and get it to work.  For so many years amateurs were told that "homebrew receivers are too hard."  Even simple regens or direct conversion rigs were sometimes seen as beyond the abilities of amateurs.  But here we see another reminder of this not being true.  Even a superhet -- which is a lot more difficult than a direct conversion receiver -- can be homebrewed by an amateur builder.  Three cheers for Pil Joo! 

He wrote on the SolderSmoke Facebook page: 

I finished my first super het receiver. It's for the 40m band. It consists of: bandpass filter, tuned amp, diode ring mixer, wide band amp, crystal ladder filter, wide band amp, then SA602 + LM386 combo. I learned tons as i put all the components. First two amps are my design. The third amp is bga2866. The bandpass filter is what i posted a few days ago. I planned to make another one but with 2.5db insertion loss i thought it was good enough.

The result is actually quite good. I can hear everything a local kiwisdr can hear. Now, I have lots of ideas about how i can improve, but that will be another radio.

Pil Joo


Friday, November 22, 2024

Tezukuri and Chappy Happy -- Amazing Videos on Homebrew Radio (from Japan?) - Another 40 Meter Direct Conversion Receiver

So around the time we were building 40 meter direct conversion receivers, someone else was doing something similar.  His product (above) is a lot nicer than ours.  He has an S-meter and a digital frequency readout.  But like ours, his is built on a wooden board.  FB OM.  

If you want to see what a direct conversion receiver can do, watch his video (above). 

I was really amazed to see him use a modified VFO from a Kenwood TS-820.  Not long ago Pete N6QW spotted one of these on e-bay and recommended that I buy it.  As with the Yaesu FT-101 VFOs, we bought it for the gears and reduction drives but ended up with the entire VFO circuit.  I now have one on my shelf, ready to go.  TRGHS. 

We are not sure who Chappy Happy is, but "Tezukuri" means "hand-made" in Japanese. The writing in the video descriptions are in Japanese, then Chinese. 

Here is the YouTube channel.  Amazing stuff here:  https://www.youtube.com/@chappyhappy3675  He is clearly a ham.  He even works on an old S-38.  Who is this guy? 


Saturday, November 16, 2024

Video -- Mythbuster II Rig Gets a Front Panel -- Circuit Build Almost Done


Yesterday I built a front panel for my Mythbuster II 20 meter SSB transceiver. 

I used 1/8 inch plywood available from Amazon. 

I cut holes for the main tuning knob and dial, for the AF gain control, for the mic plug and for a 6 figure PLJ PIC frequency counter.   This gives me 100 Hz read capability, but I can hit the lower button on the counter to get 10 Hz reolution.  This may help when the other guy complains bitterly that I am 40 Hz off frequency.  The counter added noise to the receiver, but I was able to knock this down completely with a resistor and a cap on the power line to the counter. 

I put copper tape on the inside of the panel. 

I added a reverse polarity protection circuit.  I now sleep more soundly. 

I increased the size of the heat sink on my RD06 final.  This decrease the danger of blowing up this device. 

I added a jack for the connector that will switch the outboard .1 kW linear from R to T.  

Video above. Comments welcome.  

 

Tuesday, October 22, 2024

KA1MUQ's Amazing Homebrew Hybrid Rig

 


Nate KA1MUQ is still working on this rig and so has not yet produced any detailed schematics, but he sent this to us to show that true homebrewing is NOT dead.  Indeed, his magnificent work shows that it is not!  This is a 5 band SSB transmitter using both transistors and Thermatrons. I see a crystal filter from Mostly DIY RF in there.  FB!   And Nate tapped into Pete Juliano's tribal wisdom on homebrewing and hybrid rigs.  Pete commented that the three 6146s in the final reminded him of a Yaesu FT-102.  

Click on images for a better view. 




Thanks Nate! 

Wednesday, October 2, 2024

4Z4GE's Homebrew Tube SSB Transmitter from Israel, 1974


https://www.nzeldes.com/Miscellany/SSB-rig.htm 

Very cool. I like his description of how he found parts for this transmitter:  

The power amplifier tubes needed ventilation as well as shielding; that was always a challenge because I had no good source of perforated metal. The black sheet with the round holes actually came from the cover of a car air filter that I found in the trash.

There is a lot more interesting stuff on Nathan Zelde 4Z4GE's site: 

https://www.nzeldes.com/possiblyinteresting.htm

Thanks Nathan! 



Sunday, July 28, 2024

A Message from Walter KA4KXX -- On Bias Setting, the Joys of Al Fresco Rigs, Lawn--Sign Radio Base

 


Dear Dean KK4DAS:

...


3) Note that a rule of thumb I have used successfully in adjusting RF Power MOSFET
bias is to increase the voltage in 100mV steps, measuring the RF Output Power 
each time, and stop as soon as you start to see significantly diminishing returns.

4)  Although I did mention a plexiglass cover (the idea was from the Electroluminescent 
Receiver in photo below) in a 2017 entry I made on my QRZ page, I never built one, because I  have found a cover of any kind to be unnecessary and even detrimental based on operating portable outdoors in a public park with my rigs once every month for 10 years.  

From these experiences I have enjoyed the wonderment and respect I have received 
from fellow hams as well as passersby who have universally admired my creations. 
If the truth were known, my homebrew Alfresco transceivers might be the most 
photographed radios in all of ham history!  

Therefore, the only box I bring to my ham radio outings is for my lunch, because nobody
really gets excited about photographing just another box.
However, I do use plastic carrying cases per the photo for any rigs I carry 
in the trunk of my car.  If it rains, the top of the carrying case can be used as a 
temporary cover, so I know contacts can be made in a light rain because I have done it.
[Of course, credit card hams are not capable of operating portable even on a cloudy day
or their $$$$ radios would suffer from high humidity disease and need to be sent 
back to the offshore factory for $$$ refurbishment!]

5)  Lastly I will mention that I have never used any type of wood for a radio base because
wood is too heavy (and 1/8 inch aircraft plywood is too expensive), and the strength of
wood is not necessary to support a measly 5 pounds of electronic parts. 
Instead, per the photo, I have used Coroplast yard sign material (usually two sheets
with the channels crosswise then taped or glued together with the top covered using copper tape) common school science fair poster board, or good heavy duty cardboard such as from a TV set box.

Either light or heavy-duty double-sided tape and 4-40 or 6-32 nuts, bolts, and washers (sometimes oversized) are used to hold everything on board.  Occasionally L brackets, standoffs, hot glue, and foam or balsa wood support pieces are also utilized. 

In summary, keep up your good work as the new star on the Soldersmoke Podcast and 
please be certain Bill pays you as much as Pete.

72,
Walter
KA4KXX


Tuesday, June 18, 2024

Amazing Homebrew from Japan -- 7L4WVU's All Homebrew Station


Thanks to Roy WN3F for alerting me to this.  Tadashi-san has really built some beautiful stuff.  Especially impressive to me is his use of the spectrum analyser and two-tone audio tests to look at IMD of the entire transceiver.  See video above. FB OM.  

Be sure to check out 7L4WVU's YouTube channel: 

And his QRZ page heralding his all-homebrew station covering 1.8 to 430 MHz: https://www.qrz.com/db/7L4WVU



Saturday, May 4, 2024

W4YWA's Homebrew Rig on 20 Meters

 

Ed W4YWA is far too modest -- he has built a very FB homewbrew transmitter.  Congratulations Ed.  I think your original plan to use a Web SDR receiver will work, if you and the other station are just willing to pause for an additional second or two to let the internet catch up with the real world.  Also, you might find some Web SDRs that have less latency than other.  You could used a little SW receiver or a simple buzzer for your sidetone ( I think sidetone is your most pressing latency concern.)   My suggestion is to try to get a few contacts using the Web SDR (perhaps via schedule -- try the DX Summit or the SKCC web page to set some up). Then build yourself a simple Direct Conversion receiver to use with this rig.  You don't have to try to build a VFO at 14 MHz (that can be difficult) -- you could build one at 7 MHz (use the circuit from our High School receiver project) and pair it up with a "Subharmonic Mixer" so that you can tune the 20 meter band.  Please keep us posted on your progress. 

Ed writes: 

Home-Brew Fun and Failures 


I’m not much of an amateur radio operator, but I enjoy the electronics, self leaning, and the home brewing aspects of our hobby. Here’s an account of a recent effort. While trying to re-learn CW, I discovered web-based SDR sites with waterfall displays, all kinds of filtering and better performance than any of my vintage station receivers. So, I start thinking….. if I had a little transmitter and a simple antenna, along with internet access, I’d have a capable station to take on vacations to the beach. Yes I know, there are web based amateur radio stations, but remember the operative words here are: “Home Brew.” After pinging the Google machine, I came up with a two-stage 1-1/2 watt transmitter sometimes refereed to as the “Universal QRP transmitter,” or the “Little Joe Transmitter.” There’s lots of variations of this circuit but it is essentially a Colpits crystal oscillator coupled to a class-C PA. I chose 20 meters because I didn’t want to hire an arborist to string my antenna. My design modifications included a transistor switch that keys both the oscillator and PA, a VXO circuit, power transistor protection, and a 5-th order Chebychev low pass filter.

Notice the (do I dare say, good looking?) enclosure. In a former life, it was a SD card reader from a defunct PC. FYI, gutted CD/DVR drive cases also make fine enclosures for your home brew projects. I opted for a “foil side up – without holes” for my PCB design. All the parts are soldered down on the lands - no PCB holes. I wanted to change parts without having to do open heart surgery. Functional placement was also important to me. I took more time than I’d like to admit to organize the circuit layout as I did, but I’m glad I did.


When all was said and done, it was time to power it up and….. and …. nothing! Not a single function worked! I won’t bore you with the debug stories that took forever, but the only part I didn’t have in my junk box was the PA transistor. I got 10 of them for $5 off the Internets and they all failed to deliver. I could only get a few tenths of a watt from my design. In a fit of desperation, I un-soldered a PA transistor from an old CB radio and it immediately gave me 1.8 watts of pure CW ! ! ! ! Happy dance, happy dance! But, save your accolades. There were lots of other problems; they were my problems not component issues. For example, before you design your own RF filter be sure you understand cutoff frequencies. They are not the same for every filter design. I suggest Paul Harden’s NA5N site to learn about PA output filters. My first few filter attempts had the transmit frequency well down on the attenuation curve. I was attenuating my own signal ! So, after weeks of “why don’t the damn thing work,” I got a clean signal. Whoo-Hoo!


Now it was time to unshackle the dummy load and see where I can be heard. And, Oh boy… I’m beaming into Pennsylvania, Georgia and Northern VA, all from an inverted V on a tripod mounted paint stick, held apart with two tent stakes. But then, reality took over. My grandioso plans for using the web-based SDRs as a station receiver (and the side tone oscillator for my transmitter) didn’t account for the latency delays of the SDR software. If you ever listened talk radio and the host says, “Turn your radio off – the delay will make you sound like a ….” you know what I’m talking about. You would think that someone who over thinks everything, would have foreseen this issue before spending countless hours of breathing solder fumes? Humility and eating crow are my better traits. But not to worry, I’m not ready to give up. Stay tuned for more adventures of Home-Brew Fun and Failures. 

73s W4YWA

Designer: Douglas Bowman | Dimodifikasi oleh Abdul Munir Original Posting Rounders 3 Column