Podcasting since 2005! Listen to Latest SolderSmoke

Showing posts with label Phasing Rigs. Show all posts
Showing posts with label Phasing Rigs. Show all posts

Thursday, January 21, 2016

High-Pass Filter Knocks Down AM Broadcast Interference


WFAX 1220 AM was starting to bother me.  Each morning, I'd be drinking my coffee, listening to nice roundtables on 160 meters, when, right at 6 AM, WFAX would fire up its 5 kW AM transmitter, 1.5 miles from my location.  And they would crush the "front end" of my R2 phasing receiver.  It doesn't take much to do that, since the only thing between the SBL-1 mixers in the R2 and the antenna is a signal splitter.  Obviously I needed some filtering. 

I turned to the free program called Elsie (L-C, get it?) and quickly whipped up a design for a seven element, capacitive input high-pass filter that promised to take about 45 db out of WFAX's sails, without attenuating even the lowest end of Top Band. 

Last night I scrounged through the junk boxes and found suitable capacitors.  A visit to an on-line toroid calculator showed that around 35 turns on a T-50-2 (red) iron powder core would yield the needed 6 uH coils.   I built the filter  this morning -- picture below. 

It works very well.  You can see the results in the picture above.  The yellow trace on the 'scope shows the signal at the antenna terminal.  Yikes, it shows around 4 volts rms at 1.220 MHz (the scale is 5 volts/div).  The blue trace below is on the same scale -- this is the signal coming out of the filter.  Not enough to really measure on the 5 volts/division scale.  

This was a very satisfying "quick and easy" build.   I really like the sound of the R2, so much so that I'm not firing up the DX-100 as much as I had been.  Instead I find myself just listening to the R2.



Tuesday, January 19, 2016

Arduino Problems -- Back from the Ledge

As I was struggling through this, someone -- who will remain nameless -- told me that because of all the technical problems resulting from the many Arduino IDE "upgrades," suicide prevention hotlines now answer all calls with an automated question:  "If you are calling about an Arduino problem, press 1 for assistance."

It got pretty ugly but with the help of Tom up in NYC I managed to get through it. First he convinced me that it is indeed POSSIBLE to upload the latest version of the IDE -- the dreaded 1.6.7.   I just had to REALLY get rid of earlier versions.  This got me past the horrible Bundled Java Runtime Environment problem (who thinks up these names?).

We then worked with the libraries needed to upload the AD9850 code of Richard AD7C.  You see, I work on Arduino stuff.   Then I stop.  18 months pass.  I forget all I learned.  Then I start over.  The pain begins again.  In an effort to break this cycle, I am now taking notes (in the inside cover of Mario Banzi's book).

I am using the AD9850 with a Kanga Arduino shield designed by Paul M0XPD.   It takes the AD9850 output, divides by 4 and puts it out as 2 square waves in quadrature.  I use this with my R2 phasing receiver.   The problem was that the display on the Arduino showed a freq 4 times the actual tuning freq.  Believe me, this gets old fast.  I considered just getting a San Jian freq counter and supergluing it on the top of the DDS box.  I was going to connect this to the square wave output.  That would have given me one readout with the actual receive freq, and another (on the Arduino) showing the (4X) freq coming out of the AD9850.  But that would have been too much of a Kludge. Tom talked me out of it and modified the code so that the Arduino display shows the actual receive freq.   Thanks Tom.  

Armed with the new IDE and with my knowledge of Arduino basics refreshed, I was able to reload the LA3PNA Si5351 code into my 40 meter DIGI-TIA.  But not before having to swap out the Arduino that drives the Si5351.   One Arduino happily accepted the code, another did not.  Why?  Who knows?  It is a digital mystery.  Those little 1s and 0s are fickle you know.

The Radio Gods rewarded me for all this.  At about 5:45 AM today I was listening to a very friendly SSB roundtable on 160.  The guys were getting ready to sign off.  The last one ended the conversation by asking the others to "Be kind.  Smile at your neighbors."  Nice.
Then WFAX AM started the broadcast day at 6 am, wiping out my 160 meter reception.  Next project:  High-Pass filter at 1.7 MHz.









Saturday, January 16, 2016

SolderSmoke Podcast #184 160 AM and CW, R2 Phasing Receiver, Mailbag


SolderSmoke Podcast #184 is available

http://soldersmoke.com/soldersmoke184.mp3

16 January 2016
-- The Radio Amateur is BALANCED
-- Pete exhibits CLEAR symptoms of Dilbert's disease!
-- Santa brought me a 160 meter antenna
-- Ground Radial systems large and small
-- Clip lead L network
-- ON THE AIR ON 160!
-- AM contacts
-- SKN 160 CW with sidetone from the DX-100 transformer
-- Stations with character and personality on 160 AM
-- Pending projects for the AM station
-- R2 phasing receiver Trials and Tribulations 
-- Bill's Astatic D-104 goes into rebellion
-- Ramsey Kits closing down
-- SPRAT 165,  Sidetone,   M0XPD's VXO
-- "The Martian"  movie 
-- Little Gustavo is doing well.  Thanks to all.
-- MAILBAG (an especially good one)

Tuesday, January 12, 2016

N7SUR's Phasing Receiver on an Oregon Pine Board

And here I thought I was the only one.  Apparently not.  Bob LeDoux has also built a phasing receiver using a piece of wood as a base. I note also that phasing guru Rick Campbell KK7B built his Classic 40 DC receiver  into a solid oak wrap-around case.  Bob's receiver is very interesting. That Tayloe Detector is very nice.  Phasing is fun!  As I type I am listening to Lou, EA3JE on 40 SSB with my phasing receiver. 

Bill,

I thought I'd share my breadboard system for receiver experiments.  In this example I have a phasing, single sideband Tayloe receiver. The entire receiver, less VFO, pulls 54 milliamps at 5 volts.

The chassis is a prime piece of Oregon pine.  Be forwarned; my Tayloe receiver doesn't employ a single discrete transistor.

The DDS VFO at the top is the K5BCQ Si570 based RF generator kit.  It reads 56.231 Mhz because the VFO operates at four times the receive frequency on a Tayloe detector.

The receiver consists of five boards. From left to right they are, RF front end filter; Tayloe detector and post detector amps; sideband eliminating phasing filter; eight pole low pass filter; high pass filter and audio amps.

Flexibility is key.  Each stage, or set of stages is laid out on one circuit board which is tacked to the breadboard. Controls and jacks are mounted in scrap circuit board and screwed to the side of the breadboard.

Two parallel lengths of thin circuit board are used for the power and ground strips.  Electrolytic caps are placed at each board power point.  A bit of copper desoldering braid makes the connection between board ground plane and ground strip.

The circuit board is often double sided with the back side used as a ground plane. Holes are only drilled when a ground connection is needed.

Connections between boards are made using .025 diameter header pins soldered to pads.  Wire wrap wire is used for connections between the header pins.  These pins also make good test points.  With SMT construction my intra-board signal lines rarely exceed half an inch.  This eliminates coax cable for many connections.

I like to use eight pin op amps for my designs.  These provide two stages and four poles in each package.  I have a standard board layout.  Using this single board, component selection allows low pass, high pass, band pass, gain, or no gain configurations. Multiple linked boards can be etched at one time and cut apart to meet individual circuit requirements.

Let me give credit to Dan Tayloe who developed the original receiver design in the NORCAL NC2030 CW transceiver.  I also thank Pete Juliano, N6QW and Nick Kennedy, WA5BDU, for help with current design issues.


Bob--N7SUR--

Designer: Douglas Bowman | Dimodifikasi oleh Abdul Munir Original Posting Rounders 3 Column