Podcasting since 2005! Listen to Latest SolderSmoke

Friday, February 19, 2021

James West, Inventor of the Electret Mic, has THE KNACK

 
James West (r) with Gerhard Sessler (l)  Bell Labs 1976

https://hackaday.com/2021/02/17/james-west-began-40-years-at-bell-labs-with-world-changing-microphone-tech/

For many reasons, this is a really nice story.  It is about a kid with The Knack, a kid who, like young James Clerk Maxwell, wanted to understand how things work.   It is also a technology story, the story of the invention of a device very important to us: the electret microphone. (Remember the earlier carbon mics in telephones?  I'll bet more than a few of our readers are guilty of stealing a few of those mics from pay phones.)  And it is a reminder of the benefits of helping kids who might need a mentor... or and Elmer.    

Thanks Hack-A-Day.  And three cheers for James West. 




Thursday, February 18, 2021

Phasors and the Propeller Analogy from Walla Walla University


We covered this excellent and very illuminating work before. As a follow-up, student Konrad McClure was kind enough to send me this video, which goes the extra mile with the propeller analogy. 

For me, the most interesting aspect of this is that it provides an explanation of the phase differences between upper and lower sidebands.   I need to study more about aliasing and the Nyquist criteria.  

Check out the video.  It get us a lot closer the an intuitive understanding;  math often falls short in this area. 

Thanks Konrad! 


Please send feedback to Konrad via the comment box below. 

Wednesday, February 17, 2021

Put this Chart on the Wall Above Your Workbench

 

If you are like me and sometimes forget if R=E^2/P or E^2P, this chart will help. Very useful.  

Tuesday, February 16, 2021

My Current Rig: The Quarantine Hodgepodge

 


As I continue to Stay In The Shack,  last week I was looking for something to do. This is what I came up with.   

Left to right: 
-- Speaker
-- Ramsey-kit QAMP20 modified for 40. I now have two MTP3055V MOSFETS in there.  
-- BITX40 Module with a solidified VFO from a Galaxy V (note the knob from a Drake 2B!)
-- Power supply 

It puts out about 15 watts SSB.  I was bracing for attacks from the 40 meter waterfall police, but no, everyone said it sounds great.  I had four very nice contacts yesterday.  It was fun. 

Still to do:  Possibly a San Jian frequency counter to give some Juliano Blue glowing numerals for the frequency readout.  This would be a step up from the Juliano Blue sticky note and  corresponding piece of black electrical tape that currently serves as the frequency indicator. 


Monday, February 15, 2021

Jean Shepherd Works Through a Satellite in a School


Ah,  1975.  Obviously a very different time...  I'm not sure if Shep would fit in well in the classrooms of today.  There was bit of Rodney Dangerfield in his demeanor -- that would likely cause some trouble.
 
But this clip was fun.  Shep was right on target when he talked about how getting your ham license used to mean that you'd "mastered a technical art." 

The OSCAR satellite they were using was 2 meters up and 10 meters down.  There was a Heathkit HF transceiver with a transverter.  And a Simpson multimeter.  That mic was a Turner +3 

Thanks to Steven Walters for alerting us to this.  

EXCELSIOR!   

Sunday, February 14, 2021

Friday, February 12, 2021

A Lifetime of Workshops

 

https://microship.com/consoles/?fbclid=IwAR37yc-NfOrUC93C8QZYXZfakGLf-4eBtPw2php0CpzGHBW3-fb55ciyp0w

It has been more than decade, but we've posted about Steven K. Roberts N4RVE before: 

https://soldersmoke.blogspot.com/2009/09/i-didnt-care-i-had-secret-life.html

https://soldersmoke.blogspot.com/2009/09/knack-on-bike-steve-roberts-video.html

This morning I came across his recent article about the workshops he's had over the course of his life.  Very nice.  Man, I should have held on to that SP-600 I once had.  You folks will like this: 

https://microship.com/consoles/?fbclid=IwAR37yc-NfOrUC93C8QZYXZfakGLf-4eBtPw2php0CpzGHBW3-fb55ciyp0w

Wednesday, February 10, 2021

Microphone Men -- A Really Nice Video


Thanks to Rogier PA1ZZ for sending me this really nice video.  

Tuesday, February 9, 2021

Meet Your New Soviet Neighbor -- With Hallicrafters

 
Thanks to Jeff Murray for alerting us to this.  It is obviously from World War II.   If the new neighbors had S-38s, well, that might help explain why things didn't go so well.  

Sunday, February 7, 2021

A Really Nice Video about a Regen Receiver


Thanks to Stephen Walters for posting the link to this video on the SolderSmoke Facebook page. 
I really liked the way this project was described.  I think this is the work of Ciprian in Romania. 



Really nice.   Thanks!   73  

Saturday, February 6, 2021

Some Thoughts on Singly Balanced Mixers with Two Diodes and One Transformer

In 2001, out it in the Azores, I built a 17 meter version of Doug DeMaw's Double Sideband transmitter ("Go QRP with Double Sideband" CQ Magazine, February 1997).  I struggled to understand the balanced modulator -- how it mixed, balanced, and how it produced DSB.  I later presented my understanding of the circuit in my book "SolderSmoke -- Global Adventures in Wireless Electronics" pages 132-137.   In essence, I figured out that you had to think of the balancing and the mixing as two separate operations: The transformer provided the balance that eliminated the carrier (the LO signal) while the diodes presented the two signals (audio from the mic amp and LO from the VFO) with a highly non-linear path.  The LO was successively turning on both diodes then turning off both diodes. The audio signal was being "chopped" at the rate of the LO.  This produced a complex waveform that contained sum and difference frequencies -- the upper and lower sidebands.  The carrier was balanced out by the transformer because the two outputs of the transformer were always of opposite polarity, and they were joined together at the output of the mixer.    

Fast forward to 2013.  I built a 17 meter version of Farhan's famous BITX 20 rig.  Above you can see the balanced modulator stage, which also serves as the product detector. As you can see, it is essentially the same circuit as the one used by Doug DeMaw in his DSB rig. 


In 2018 I built a simple direct conversion receiver for my nephew.  For the mixer I used what I considered to be just a cut-down  version of the circuit used by DeMaw and Farhan.  I got the idea for this from Olivier F5LVG and his RX-20 receiver from SPRAT.    It had the RF signal coming in on L1 and the VFO signal coming in to the wiper of the 1 k pot.  But with this arrangement, the diodes were NOT both being turned off on half the VFO cycle, then both being turned on during the other half.  Instead, as the VFO signal swung positive, D2 would conduct and D1 would shut down.  When the VFO signal swung negative,  D1 would conduct and D2 would shut down.  It worked, but the diodes were being switched in a very different way than they had been in the DeMaw and Farhan circuits.  If you have the strong LO signal going in on L1, BOTH diodes conduct, then BOTH don't conduct.  But if you have the LO going in through the pot, one diode conducts while the other does not conduct. 


After I concluded that the BJT product detector circuit in the HA-600A was causing distorted SSB and CW reception, I tried the old DeMaw/Farhan circuit, this time in product detector mode.  See above. This worked better, but I realized that this configuration was balancing out the BFO signal, and not the IF signal.  My problem with the original product detector had been that IF signal was getting simultaneous envelope detection AND product detection.  So I decided to just switch the inputs and put the IF signal into L1 (where it would be balanced) and the BFO into  R1/R2 (the 100 ohm pot). 


This seemed like it would reduce the envelope detection problem, right?  I mean, L1 is the balanced input, right?  But I wonder if we need to consider how the diodes were being switched in this arrangement.  Instead of having both conducting and then both not conducting, in this arrangement one would be conducting during half the BFO's cycle, while the other was not.  That means that at any given moment, the two output sides of the transformer would be looking into very different loads -- hardly a condition conducive to balance. But I used LTSpice to look at the audio output under the two different port arrangements.  Sherwood advised looking at the output of the product detector with the BFO turned off --there should be no output with the BFO off.  And indeed, putting the IF signal into L1 and the BFO into the R1/R2 pot resulted in less of the distortion causing envelope detection.  The way the diodes were being switched didn't seem to adversely affect the balancing out of the IF signal.  I am not sure why this doesn't seem to cause trouble. 

There was, however, another problem with the use of this circuit in the Lafayette HA-600A:  port isolation.  The BFO signal was getting back into the IF signal input on L1.   I could see it on the S-meter.  This was worrisome not only because of the S-meter, but also because the same circuit was driving the receiver's AGC -- in effect, the BFO was turning the gain down.  Theoretically, this should not have been happening.  Look at the transformer.  the BFO currents going through L2 and L3 should be of opposite polarities and should be cancelling each other out in L1.  But obviously this was not happening.  Perhaps this was the result of the sequential way the diode are switching in this arrangement.   On the bench, if I put the BFO into L1, I saw very little BFO signal at the R1/R2 junction. If I put the BFO signal into the R1/R2 junction, I was a lot of BFO signal at the top of L1.  And that is what I saw on my S-meter when this circuit was used in the HA-600A. 

On the bench,  if I turned off the BFO and put an AM modulated signal into the junction of R1/R2, I can see audio getting through once the input signal reaches 1 volt peak.  I do NOT see that kind of "breakthrough" envelope detection when (with the BFO off) I put a modulated signal into L1.  So the singly balanced circuit is doing that it is supposed to do -- it is balancing out the the signal going into L1. 

So it seemed that with the singly balanced circuit I would have to choose: suffer from the poor port isolation or AM breakthrough.   Clearly it was time to go for a doubly balanced circuit.  And that is what I did. 


Finally, I took a look at another two diode detector, the Polyakov or "subharmonic" detector. This is a really interesting circuit that can teach us a lot about how mixers work.  Here you can run the local oscillator at 1/2 the signal frequency.  With two diodes back to back, the incoming signal is being sampled TWICE during each cycle of the local oscillator.  That is equivalent to having the signal sampled at twice the local oscillator frequency.   This circuit allows you to run the oscillator at a much lower frequency -- this could allow much greater oscillator stability.  In the circuit above, with both diodes connected, a 7 MHz incoming signal would produce a 2 kHz tone. 

Another big plus of this circuit comes if you take D1 out of the circuit (as shown).  In this configuration the circuit becomes a normal diode detector.  Here it will receive a signal at 3.5 MHz, converting that signal into a 1 kHz audio tone.  So you can get a direct conversion receiver for 40 and 80 meters fairly easily. 
Designer: Douglas Bowman | Dimodifikasi oleh Abdul Munir Original Posting Rounders 3 Column