Podcasting since 2005! Listen to Latest SolderSmoke

Wednesday, December 4, 2024

Challenge Accepted! Why we Designed the High-School Direct-Conversion Receiver the Way we Did

Dean KK4DAS's Beautiful DC Receiver

The folks over at Ham Radio Workbench have graciously accepted the challenge issued in our last podcast: that they scratch-build homebrew the 40 meter Direct Conversion receiver that Dean KK4DAS and I designed for local high school students.  We want to help our brothers over at HRWB.  For example, we may be able to supply a few of the 3D printed PTO coil forms.  Here is some background information on the project. 

Details on the project can be found here: 
----------------------

Design Decisions in the Direct Conversion Receiver

Why did we do it this way?

In thinking about how to design this receiver, we had to make early design decisions on almost every stage.  Here are some of our key considerations.

VARIABLE FREQUENCY OSCILLATOR:

Normally we might have used a variable capacitor to change the frequency of this oscillator.  But variable capacitors are now expensive and hard-to-source.  Our friend Farhan in Hyderabad used a simple variable inductor for this purpose in his “Daylight Again” transceiver. The coil form for this part could be 3D printed.  A metallic screw would vary the inductance as it is screwed in and out of the coil.  

We also decided to use the same simple Colpitts oscillator circuit used by Farhan in his own high school direct conversion receiver.  This circuit is unusual in that the feedback capacitors are also the frequency determining elements (along with the variable inductor).  This simplified the circuit and reduced the parts count, and proved to be remarkably stable.

For the VFO buffer we used the simple JFET buffer from Farhan’s Daylight Again design.  

Based on suggestions from other radio amateurs, we developed a simple frequency readout based on the position of the end of the tuning screw  (how far in or out?).

We selected the 40 Meter band for this receiver because we thought it would be easier to get the VFO stable on this frequency, and because Farhan had built his receiver for 40 meters.

MIXER:

At first we hoped to use a simple singly-balanced mixer using two diodes and a single trifilar transformer.   But we found unacceptably high levels of AM breakthrough (mostly from Radio Marti on 7335 kHz) when using this circuit.  So we switched to a diode ring.  This required two more diodes and an additional trifilar transformer.   We believed the students would have great difficulty building and installing two trifilar transformers so early in their building experience.  So we used transformers that had been wound in Hyderabad by a women’s collective employed by Farhan, and developed a scheme for fool-proof installation of these transformers.

We also found that the mixer needed a diplexer at its output – this would provide a 50 ohm termination at all frequencies and would result in much cleaner action by the mixer and greatly reduced AM breakthrough from Radio Marti.   We used the same circuit used by Roy Lewellen W7EL in his Optimized Transceiver circuit.

BANDPASS FILTER: 

This was the simplest board in the project but it required the students to wind two coils on toroidal cores.  A simple dual-tuned circuit design would be sufficient.  We used component values from the QRP Labs website.  We showed them how to wind the coils, and made a video about the technique.  Students used a simple Vector Network Analyzer (Nano VNA)  to tune the filter.

 

AUDIO AMPLIFIER: 

We had to make several design decisions here.  First, we rejected the idea of using an IC amplifier like the ubiquitous LM-386. We wanted this to be a completely analog and discrete component experience. Then we rejected the idea of using a push-pull output circuit.  While this would have eliminated the need for an audio output transformer, it would have resulted in a more complicated circuit.  In the end we opted for three simple RC-coupled common-emitter amplifiers with an audio output transformer.  There was no feedback in these circuits.  We found there is a lot of gain (hFe) variation in the 2N3904 transistors that we used.  Care needs to be exercised in making sure that transistors of moderate (but not too high) gain are used.  

This AF amplifier chain probably presented a 1500 ohm impedance to the mixer (instead of the desired 50 ohms), but we think this problem may have largely been taken care of by the diplexer.  

We found some very small (one square inch) speakers that could be easily used in this circuit.

ANTENNA:

While the students could use a wide variety of antennas, we recommended a simple ¼ wave antenna with a ¼ wave counterpoise.  We thought that this antenna – of only 33 feet in length would provide good performance with low complexity, and would be well suited to the “upper floor bedrooms” from  which many of the students would be listening.  Also, this antenna would not require the use of coaxial cable or an impedance matching transformer. We made a video on how to build and use this antenna. 

POWER SUPPLY:

We opted for the use of 9 volt batteries.  This proved to be a safer and wiser choice that limited the kind of mayhem that could occur should a variable voltage supply be used.

Details on the receiver can be found here: 

https://hackaday.io/project/190327-high-schoolers-build-a-radio-receiver

May 29, 2023

Tuesday, December 3, 2024

Pil Joo's Homebrew Superheterodyne Ham-Radio Receiver


It is just very cool to see someone build a superhet and get it to work.  For so many years amateurs were told that "homebrew receivers are too hard."  Even simple regens or direct conversion rigs were sometimes seen as beyond the abilities of amateurs.  But here we see another reminder of this not being true.  Even a superhet -- which is a lot more difficult than a direct conversion receiver -- can be homebrewed by an amateur builder.  Three cheers for Pil Joo! 

He wrote on the SolderSmoke Facebook page: 

I finished my first super het receiver. It's for the 40m band. It consists of: bandpass filter, tuned amp, diode ring mixer, wide band amp, crystal ladder filter, wide band amp, then SA602 + LM386 combo. I learned tons as i put all the components. First two amps are my design. The third amp is bga2866. The bandpass filter is what i posted a few days ago. I planned to make another one but with 2.5db insertion loss i thought it was good enough.

The result is actually quite good. I can hear everything a local kiwisdr can hear. Now, I have lots of ideas about how i can improve, but that will be another radio.

Pil Joo


Sunday, December 1, 2024

A 40 Meter Direct Conversion Receiver from M0NTV -- With some SolderSmoke Comments


Nick's video appears above. 

First, let me say FB Nick.   It is nice to see you making use of the AGC amp designed by Wes and Bob,  using the board from Todd's Mostly DIY RF, using a mix of homebrew pads and Me-Squares  from Rex, and finally the Franklin Oscillator that we spent so much time talking about on SolderSmoke.  

But here are some comments:  

-- I still don't think you need that RF amplifier in front of the mixer. And I suspect you would be better off without it.  We did not use one in our high school 40 meter project, and never missed it.  In fact, on one version of the high school receiver I even put in a simple 10k pot as an attenuator (no RF amp).  Even up on 20 meters, I do not have an RF amplifier ahead of the diode ring mixer on either of the Mythbuster rigs I have built.  Nick,  maybe experiment a bit more and try the receiver just going from the BP filter into the mixer and see what happens.  

Note that Wes W7ZOI DID NOT have an REF amp ahead of the diode ring mixer in his original 1968 40 meter Direct Conversion receiver (the one that launched the solid-state DC recevier revolution): 


-- The Franklin oscillator is an interesting, but complicated circuit.  The gimmick is, well, gimmicky.  Here is the thing:  You can achieve similar levels of stability using simple conventional, single transistor oscillators.  We dispensed with the variable capacitors, and used PTO--style variable inductors. They worked fine.  This Franklin oscillator still does seem to drift a bit, right?   I would ground the board to the inside of the metal box.    

I would also try putting all the stages on a single ground plane.  This might help.  

Friday, November 29, 2024

Charlie "Red" NJ7V Builds an Oscillator -- Manhattan Style


https://www.youtube.com/shorts/7t_E5N4CQxg

Red did a nice job building, then explaining, this 18 MHz crystal oscillator.   I especially liked his use of Manhattan techniques, and the way he explained his effort to make the new circuit work.  Too often builders expect a circuit to work right away.   This often doesn't happen, and the new circuit requires some troubleshooting.  Red did this with this circuit and got it working.  

Red has a nice YouTube channel: https://www.youtube.com/@RedSummitRF.  It is focused on POTA, but we hope it has more and more homebrew stuff like this.  

Thanks to Rogier PA1ZZ for sending me this. 



Tuesday, November 26, 2024

The Importance to Bell Labs of Lunch or Breakfast with Harry Nyquist -- "The Communicator" -- Bimonthly Publication of the Surrey (British Columbia) ARC.


This is a good sample (!) of the great content to be found in "The Communicator." This is the bimonthly publication of the Surrey (British Columbia) Amateur Radio Club.  You can find the publication and digital back issues here: https://ve7sar.blogspot.com/ 

There is a lot of great material in this publication. 

Monday, November 25, 2024

Pete N6QW Has Hybrid Rig On-The-Air

 
A thing of beauty on a wooden board.  Pete's post: 


"Them that know can make it go!"  Indeed.  

Pete talked about the history of this rig, and especially of the Thermatron portion of it, in the most recent episode of the SolderSmoke podcast: 

Thanks Pete! 


Sunday, November 24, 2024

Oscar 7... and Oscar 11 (aka UoSat-2)? Did Oscar 11 do much the same thing as Oscar 7?


Above is a pretty good video by Retro Rockets.  Some will quibble about the technical details presented, especially about early radio, but I think the video does a pretty good job of describing the early production of ham radio satellites.  

As I watched this video however, I started to wonder if OSCAR 7 was in fact unique in coming back from the dead.  Back in 2018, I watched signals from OSCAR 11 (aka UoSat -2) as it tumbled through space with its battery dead, powered by a direct connection to its solar  panels: 
This was what Retro Rocket said was Oscar 7's claim to fame, right?  

In both cases, what happened was pretty cool, but did OSCAR 11 sort of repeat the supposedly miraculous rebirth of OSCAR 7?   

Friday, November 22, 2024

Sam WN5C uses ChatGPT as an Emergency Elmer

Sam WN5C has been on the blog before.  Last year we covered his heroic use of a Michigan Mighty Mite at Thunderbird State Park:  https://soldersmoke.blogspot.com/2023/06/sam-wn5c-builds-michigan-mighty-mite.html

This time, Sam writes about a good  ham radio use for ChatGPT: 

Hope you’re doing well. Just a quick note: ChatGPT is turning out to be a great homebrewing tool for me.

My elmer has been swamped with family issues, so my basic questions (“can you explain this circuit for me”) and hard questions (“why doesn’t this circuit I built work?!”) that he usually responds to right away has been a bit delayed. I’m in the process of designing a 5-band QRP CW transceiver with a superhet receiver and SSB receive so I’m learning a bunch of new circuits.

 

I’ve hated the idea of AI as someone who writes a lot (it cheapens what I’ve spent my career trying to perfect!), but man it is smart. I can ask it all kinds of questions. For example, it helped me design a little IF amp last night and ensured I got my impedance matching right (it’s great for mashing up lots of circuits and ensuring they work together). I can ask it for suggestions on part types and values. It helps with Arduino code if you’re into that. You can use plain language but it does well with heavy jargon. And, which I find really cool, it will step you through troubleshooting. It teaches the math, too.

 

Anyway, you or your readers might find this helpful. Especially when one is building at 3 AM and needs an answer immediately.


------------------


Thanks Sam! 

 

Tezukuri and Chappy Happy -- Amazing Videos on Homebrew Radio (from Japan?) - Another 40 Meter Direct Conversion Receiver

So around the time we were building 40 meter direct conversion receivers, someone else was doing something similar.  His product (above) is a lot nicer than ours.  He has an S-meter and a digital frequency readout.  But like ours, his is built on a wooden board.  FB OM.  

If you want to see what a direct conversion receiver can do, watch his video (above). 

I was really amazed to see him use a modified VFO from a Kenwood TS-820.  Not long ago Pete N6QW spotted one of these on e-bay and recommended that I buy it.  As with the Yaesu FT-101 VFOs, we bought it for the gears and reduction drives but ended up with the entire VFO circuit.  I now have one on my shelf, ready to go.  TRGHS. 

We are not sure who Chappy Happy is, but "Tezukuri" means "hand-made" in Japanese. The writing in the video descriptions are in Japanese, then Chinese. 

Here is the YouTube channel.  Amazing stuff here:  https://www.youtube.com/@chappyhappy3675  He is clearly a ham.  He even works on an old S-38.  Who is this guy? 


Thursday, November 21, 2024

Basic Radio Circuitry -- a 1971 film


This 1971 training film is pretty good.  I like how they break the RF circuitry into just four components, then describe the AM receiver stage by stage.  The way they handle diode (envelope) detection is exactly right.  But their description of how mixing moves the incoming signal from the broadcast band to the IF is overly simple, and sort of just repeats the hetrodyne story from music. Real mixing is, of course, more complicated than that, but too complicated for a 15 minute film. 

Tuesday, November 19, 2024

Bill N2CQR Appears as a Guest on the Ham Radio Workbench Podcast


https://www.hamradioworkbench.com/podcast/hrwb-223-a-conversation-with-bill-meara-n2cqr-from-the-soldersmoke-podcast 

Partly in an effort to make ammends for some overly harsh comments I made about the podcast's approach to the "rejuvenation" of old radios (it turned out to be overly digital for me) I appeared earlier this month on the Ham Radio Workbench podcast.  It was a lot of fun. They are a great  bunch of guys.  And I think we had a great discussion of homebrewing and HDR in the modern era. We talked about Jean Shepherd, Farhan, G-QRP, kits vs. homebrew, homebrew vs. commercial, SDR rigs, the sBITX, the NORCAL 40, the Gilbert Cell Mixer, our experience (bad) trying to get high school kids to build a DC receiver, and many other topics. 

Thanks George!  And thanks to the entire Ham Radio Workbench crew!

Remember, SolderSmoke has issued a challenge to the HRWB team:  We challenge them to build the 40 meter Direct Conversion receiver that we designed for our local high school.  We urged them to build it the way we designed it -- avoid the temptation to substitute stages, or use pre-fab circuit boards.  Build the four stages Manhattan style and get the receiver working on 40.  Here are the details on how we did it.  Here are our building documents:

https://hackaday.io/project/190327-high-schoolers-build-a-radio-receiver

The challenge has been issued.  The gauntlet is on the ground.  Go for it HRWB!  Put those workbenches to use! 



Saturday, November 16, 2024

Video -- Mythbuster II Rig Gets a Front Panel -- Circuit Build Almost Done


Yesterday I built a front panel for my Mythbuster II 20 meter SSB transceiver. 

I used 1/8 inch plywood available from Amazon. 

I cut holes for the main tuning knob and dial, for the AF gain control, for the mic plug and for a 6 figure PLJ PIC frequency counter.   This gives me 100 Hz read capability, but I can hit the lower button on the counter to get 10 Hz reolution.  This may help when the other guy complains bitterly that I am 40 Hz off frequency.  The counter added noise to the receiver, but I was able to knock this down completely with a resistor and a cap on the power line to the counter. 

I put copper tape on the inside of the panel. 

I added a reverse polarity protection circuit.  I now sleep more soundly. 

I increased the size of the heat sink on my RD06 final.  This decrease the danger of blowing up this device. 

I added a jack for the connector that will switch the outboard .1 kW linear from R to T.  

Video above. Comments welcome.  

 

Designer: Douglas Bowman | Dimodifikasi oleh Abdul Munir Original Posting Rounders 3 Column