Podcasting since 2005! Listen to Latest SolderSmoke

Tuesday, June 2, 2009

Alan Yates Making X-Rays from Rectifier Tubes

Anytime you find yourself writing a sentence like this...
"At only 20-30 kV and a few hundred uA in cold-cathode mode the x-ray radiation pours out, making the end-window Geiger counter scream from more than a meter away."
... perhaps some alarm bells should be going off.

Our friend Alan, VK2ZAY, has been busy in the lab, generating X-Rays from old 2X2 rectifier tubes. This reminds me of one of the articles in the wonderful C.L. Strong book, "The Amateur Scientist." Check it out: http://www.vk2zay.net/article/222

Hey Alan, can you make us up some of those X-Ray glasses that they always advertised in the backs of magazines? As a teenager, I somehow always wanted one of those...

Class C Amps and the Load and Power Out Formulas

While up in Rotterdam I started thinking about Class C Amps and the standard formula used to calculate power out and load resistance: Rl=(Vcc-Ve)^2/2Po. I understand why this formula works for Class A amps: The Vcc-Ve term describes the maximum voltage you can get at the output. The rest of the formula is just a version of P=IE and P=E^2/R. The 2 in the denominator converts peak to average. The books tell us that this same formula applies to Class C amps. How could that be? I wondered. Doesn't the output of a Class C amp look (pre-filter) like a series of pulses at the operating freq? Wouldn't that require a somewhat different formula?
The answer came from SSDRA and LTSpice. SSDRA page 25 explains "If we assume that the collector voltage varies from zero to twice the Vcc level while delivering the desired output power, the load needed at the collector is given by the familiar relation Rl=Vcc^2/2Po." (Emphasis added.) The voltage at the collector is being pulled down nearly to zero as the voltage at the base goes positive and the transistor conducts. You can see this in the waveform in the LTSpice screenshot above. Then, when the input voltage dips below about .6 volts, the transistor goes into cutoff and stops conducting. At this point the energy stored in the inductor in collector circuit is dumped onto the collector, raising the voltage there to about twice Vcc. That the ugly spike you see at the top. Wow, you can really see from this the need for output filtering.
As I was exploring this issue, I cam across an old LTSpice VideoCast from December 2006. See below.
BTW: These are the kinds of questions explored in the book "SolderSmoke -- A Global Adventure in Radio Electronics." I'm hearing that delivery is very fast, especially in the UK.

Saturation and Class C Amplfier Efficiency

Originally posted on Gadgeteer News: 10 December 2006

FIRST LTSPICE VIDEOCAST

I made a 5 minute video using a video screen-capture program and the circuit simulator LTSpice. In addition to showing how LTSpice can
be used, the video looks at how saturation affects the efficiency of Class C amplifiers. I put the file on YouTube, but the video quality is poor when viewed through that service (it is difficult to see the graph lines in the YouTube version). So I have also uploaded the 26 meg file (.wmv)
to the http://www.gadgeteer.us web site.

Click here for the direct download of the .wmv file

Click here for the YouTube (lower quality) version

Monday, June 1, 2009

Thoughts on Minimalist Radio

I had a lot of good articles on the old web-page version of this blog. I want to get them into the index, and the only way I can think of to do this is by posting them again. I don't think this is a problem: many readers will have never seen them, and even for those who have, many of these are so good they deserve a second look. This 2006 piece by KK7B is a good example (The picture is from Roger, KA7EXM's FDIM 2007 photo collection and shows KK7B winning a toroid winding contest):

A FEW THOUGHTS ON MINIMALIST RADIO FROM KK7B
(Originally posted on the EMRFD Yahoo group)

If you really want to do minimalist radio, you may want to step way
back and take a look at some very early history. The Pixie circuit
has many more components than an early CW station from the era
immediately after spark.

Rather than starting with the Pixie and trying to figure out what to
eliminate, maybe a better approach is to start from zero and decide
what you need. Combining transmit and receive functions is the last
thing to think about.

Starting with the receiver.... The first thing you need is wire up
in the air. The more, the better. If you have the real estate for a
full sized dipole on 80 meters, you can collect enough signal energy
to hear on a crystal set when conditions are good. I've copied CW
signals on 40 meters with just a dipole, transmatch, a 1N34 diode, a
good pair of headphones, and a one transistor Pierce oscillator
running on the bench. The leakage from the crystal oscillator picked
up by the antenna beats against the incoming signals. I didn't power
the oscillator with lemon juice, but I could have (see Bob Culter and
Wes Hayward, "Lemonized QSO" in March 1992 QST.)

Then for the transmitter, just heat-sink the Pierce oscillator and
key the connection to the load. The shift in load impedance will
offset the crystal oscillator frequency.

A dual pi-net transmatch configuration would take care of the
harmonics and allow maximum energy transfer between the antenna and
diode--but I'd analyze it to make sure the harmonic suppression is
more than legal.

So far I count 5 components for the dual Pi-Net transmatch, a 1N34
diode, 6 components for the one-transistor Pierce oscillator. A
dozen parts, plus headphones, a key, and battery--or some electrodes
to push into a lemon.

That would make contacts, but Wes and I have discussed a basic rule
for radios, which is that a station should be able to work an
identical station over a distance of a few miles. It could probably
be done with the above station, but a single transistor audio
amplifier running at maximum gain between the 1N34 and headphones
would make it possible to extract many more signals from the 80 meter
dipole. That's another 5 or 6 parts. So now I'm up to about 20.

For a more serious station, I'd probably add two more transistors and
a diode, so I could have a separate PA, a balanced mixer, and two
audio stages. The receiver would end up looking a bit like EMRFD
figure 8.7 with a PA tacked on. That would have about 35 parts, but
it would be able to work DX off the ionosphere...about the same
complexity and performance as many other variations on the theme. A
previous version of the Pixie from the 1970s was called "The
Optimist."

Unlike Muntz--instead of starting with someone else's circuit and
trying to eliminate parts until I had something that just barely
works, I'd start from scratch, study EMRFD (and other references too--
but in EMRFD all the circuits have been designed and tested) for
circuit ideas, and then start experimenting on the bench, one stage
and one component at a time. Since one of the joys of minimalist
radios is that they can be understood all the way down to the device
physics, I avoid ICs. (I particularly avoid cell-phone ICs, which I
designed for a number of years. It's like working in a sausage
factory--you are much happier if you don't know what's inside.)

Minimalist radio is one of the more interesting design games that we
play using the methods of EMRFD. It's cheap, it's interesting...and
as we dig in, we discover that the details can be every bit as
challenging for a radio project with 30 parts as one with 30,000.

Have fun.

Best Regards,

Rick kk7b

Saturday, May 30, 2009

In Rotterdam

I'm up here with Billy on a violin gig. Beautiful place! Will descrbe
on next podcast. 73

Sunday, May 24, 2009

Radio Signals from Jupiter and Io on 17 Meters

Jupiter and Io montage captured by the New horizons spacecraft.
The Jupiter image is false-color near IR data obtained with the LEISA instrument, built at GSFC.

I try to always read the QRP-L postings of NA5N -- Paul always has something interesting in his messages. Today I found this:
Jupiter emissions peak around 18-22MHz; they are a function of when the moon Io crosses certain longitudes of the relatively fast spinning Jupiter. There used to be a couple of calculators online (haven't checked lately) as to when the L-bursts should occur. The timing is quite predictable; detecting them on every predicted occurrence is not. You have to have an antenna with a little bit of gain. The signals are generally weaker (that is, near the atmospheric noise level) than can be detected with a dipole. With a fairly decent setup, the Jovian L-bursts sounds like ocean waves crashing on a distant beach, just barely above the noise level. The S-bursts sounds like random pulse type static in short bursts. These are harder to detect than the L-bursts.

I had known about the Jovian radio emissions, but I didn't know that the moon Io was involved. For me, Io's involvement somehow makes this even more interesting. Jupiter and its moons (including Io) are some of the few celestial objects I can regularly see from central Rome.

Here is a good description of Jupiter's radio signals, and Io's role in transmitting them:
http://radiojove.gsfc.nasa.gov/library/sci_briefs/decametric.htm

And here is an interesting article about the discovery (50 years ago) of these signals:
http://radiojove.gsfc.nasa.gov/library/sci_briefs/discovery.html

SolderSmoke Podcast #108

http://www.soldersmoke.com

In SolderSmoke 108:

May 24, 2009
Hubble Space Telescope Repair Mission
WSPR: W3PM sees my sigs, back to visual (briefly), on to Slow Hell.
Ubuntu ham radio software
Time nuts
Jean Shepherd gets his Class A license
"SolderSmoke -- The Book" Good for summer vacation reading.
SPECIAL REPORT FROM DAYTON - FDIM BY BOB W8SX
MAILBAG

CHECK OUT THE BOOK: (First chapter preview available)

http://www.lulu.com/content/paperback-book/soldersmoke/6743576



73 from Rome
Designer: Douglas Bowman | Dimodifikasi oleh Abdul Munir Original Posting Rounders 3 Column