Podcasting since 2005! Listen to Latest SolderSmoke

Showing posts with label Mythbuster. Show all posts
Showing posts with label Mythbuster. Show all posts

Wednesday, March 13, 2024

Using the RF Power Amplifier of the BITX40 Module

 

PA shematic from the BITX 40 Module
Click on the diagram for a better view

C.F. Rockey W9SCH (who alerted us in SPRAT 22 to the chicken sacrifice option) spoke of transistors that exhibit "quantum mechanical necromancy."  Rockey explained that when this happens, "The transistor simply turns up its toes and dies. Not even an Atomic Physicist can tell you why!"  

This often (very often!) happens with homebrew power amplifiers.  So when we find a good one, many of us stick with it, using the same power amp circuit in rig after rig.  I have done this with the power amplifier from the BITX40 Module. 

Mythbuster (75 & 20 Meter) version (early)  
Click on image for a better view. 
https://soldersmoke.blogspot.com/2021/08/mythbuster-video-13-rf-power-amplifier.html

Same amplifier built into Version 2 of the 15-10 Transceiver 
Click on image for a better view. 

In the build for the 15-10 transceiver you can see some changes.  I used an RD06HHF1 instead of an IRF-510.  I used an 8.1 volt zener diode instead of the regulator chip. I set the bias at around 5.5 volts DC on the gate of the RD06.   I used a smaller, metal can driver transistor (it works fine). I changed the input/output physical configuration between the pre-driver and the driver stages (I think it was kind of goofy the way I had it in the Mythbuster).  Finally, you can see how I used a small piece of copper tape (with conductive adhesive) to shield the line going from the driver transformer to the gate of the RD06.  The wire was too small to use a bit of shielded coax, but I think the copper tape and the copper clad board beneath it work just as well. 

Farhan provided me with some fascinating background on this circuit: 

Bill,

I just saw your post on the bitx40 power amp. The credit must go to Wes for this, it is from the Lichen transceiver described in 6.9 of the EMRFD. I merely copied it with some modifications for it to work with junkbox components.

It bears mentioning that at that time I didn't have a way of generating two tone signal or measuring the IMDR. Those came later when I built my own spectrum analyzer based on Wes and Terry White's spectrum analyzer. It was sheer luck that I picked this power chain that already had careful gain distribution.

For the output, the original build used and LPF with inductors wound on a ballpen shell and TV baluns cores instead of toroids. Again, it was incredibly lucky that they worked at all. 

- f

Thursday, December 14, 2023

Mythbuster Video for the Lamakaan Amateur Radio Club of Hyderabad, India


I was really pleased when Farhan asked me to speak at this year's Lamakaan Amateur Radio Club convention.  He asked me to talk about my Mythbuster 75 and 20 meter SSB rig.  It was especially nice to talk about this rig because so much of the inspiration and circuitry for it came from Farhan's BITX rigs.  

I recorded a video so that we could avoid WiFi trouble -- the video appears above.  Below you can see photos of the convention and the presentation of the video.  



Thanks Farhan and thanks to the Lamakaan ARC! 

Friday, October 6, 2023

A Pretty Good Troubleshoot -- Fixing the Transmitter in my 75/20 meter Mythbuster Transceiver -- Mind the Gap!

Bidirectional Termination Insensitive Amplifier by W7ZOI and K3NHI

All of a sudden the transmitter in my 75 & 20 meter dual band homebrew Mythbuster transceiver stopped working -- there was no output at all.  I went into troubleshooting mode.

The first clue was that the receiver was working fine. This meant that many stages of the rig were taken out of suspicion:  It probably wasn't the VFO, the first mixer, the BFO/Carrier Oscillator,  the second mixer, or the bandpass filters. Nor was it any of the receive sections in the bidirectional amplifiers I was using.  

Suspicion fell on the power amplifiers and on the transmit sections of the bilateral amplifiers.  

With the output going to a dummy load,  I put the rig into transmit mode and put a bit of audio into the mic jack.  Then with the 'scope I started to work my way back from the antenna jack.  I wasn't seeing anything.  Then I got back to the transmit side of the TIA amplifier between the crystal filter and the mixer.   There was a strong signal at the input, but nothing at the output.  Bingo!  I had found the faulty stage.  But where, exactly, had this stage gone wrong? 

There are three transistors on each side of a TIA amp (see schematic above) -- I just started from the input of the first one with my scope probe and moved through the circuit.  Finally, at the output of the last of the three amplifiers, the signal stopped.  I knew I was very close to the problem.  

Looking at the components, suddenly I could see the problem:  At the output there is a 47 ohm resistor (R2 in the circuit diagram above) and a .1uF cap in series.  The cap went to a Manhattan pad.  But when I looked at it closely, the lead was kind of floating above the pad.  See it? 

Mind the Gap 

And when I moved it, the connection between the 47 ohm resistor and its pad seemed quite flimsy. 

I quickly replaced both components and was back on the air. 

I don't really know how or why the lead to that capacitor broke.  Maybe I had bent it repeatedly, to the point of weakness, and, over time, it just let go.   

Whatever the cause,  I found this to be a satisfying troubleshoot and repair.  It required me to think a bit about what could be wrong, and to use some test gear to zero on on the faulty component.  

Out with the old...

Monday, July 10, 2023

Martein's Bandpass Filters - PA3AKE

Above you can see the really nice 15 meter filter that I built using data provided by Martein PA3AKE. 

https://martein.home.xs4all.nl/pa3ake/hmode/bpf_all.html 

Before I built Martein's filter, my bandpass had been inadequate.  Looking at the signals coming out of the diode ring mixer in my 15-10 rig, I realized that when I was on 15, there would also be an output on 10.  And vice-versa.  These outputs would have to be knocked down by the bandpass filters.  I had been using simple dual tuned circuit filters. But when I looked at the filter shapes of these filters in NanoVNA, I could see that On 15 the 10 meter signal was only down about 20 db.  And on 10 the 15 MHz output was also down only by about 20 db.  That's not enough.  Take a look: 

Before,  with the dual tuned circuit filter

After with Martein's Filter 21.5 Mhz

AFTER with Martien's filter 21.1 MHz

While the earlier filter had provided only about 20 db of attenuation at 28 MHz, Martein's filter provided at least 68 db of attenuation.  That is really nice.  And the passband is nearly flat at 1 db attenuation. 

I built mine using some of the guidance provided on Martiens site.  I did use T80-10 toroids (I got them from kitsandparts.com).  And I did not use copper clad boards.  

One of the charming features if Martein's filters is the total lack of trimmer caps:  Martein recommends tuning the filters by simple squeezing the coils (to increase inductance and decrease frequency) or by spreading out the turns a bit (to decease inductance and increase frequency).  I did the later when NanoVNA showed that I didn't quite have all of the 15 meter phone band on the flat portion of the curve. 

I also like the way Martein provides the values for BP filters for all of the HF ham bands.  Very useful. 

Next I will build one for 10 meters.  And I will probably go back to my Mythbuster and 17-12 rigs and build Martein's filters for these rigs.  
Thanks Martein! 

Monday, September 5, 2022

Why Do Some VFOs Tune More Linearly Than Others?

This has been one of the major complaints about our beloved analog LC VFOs:   The frequency tuning on these circuits is often not linear.  For given amount of VFO frequency dial turn you can get vastly different changes in frequency.  At one end of the tuning range the frequencies are nicely spaced and tuning is easy.  But at the other end of the tuning range all of the frequencies are bunched together.  This is one of the problems that leads some homebrewers to defect to the sad land of "digital VFOs." 

But wait.  It appears that the old designers found a solution to this problem.  Just look at the tuning dial of my HT-37.  The frequencies are all spaced out evenly.  How did they do that? 

I had been thinking that this success may have resulted from Hallicrafters' engineers using the series-tuned Clapp circuit.  Here the main frequency determining element is a series-tuned LC circuit and not the parallel tuned LC circuit that we see in the more commonly used Colpitts circuit.  

But hold on -- how could that be?  The frequency bunching problem that we attributed to the Colpitts circuit must also exist in the Clapp, right?  I went back to SSDRA where there was a good discussion of Colpitts and Clapp VFOs.  The advantage of the Clapp was said to be in its use of a larger value coil which helped minimize the effects of stray inductances.  But there was no mention of the Clapp offering improved linearity in tuning.  

I have in front of me two transceivers:  The Mythbuster uses a 9 MHz Clapp circuit (see below).  The 17-12 rig uses a Colpitts Circuit.  I checked the tuning linearity of both.  Both appeared quite linear in tuning, with no real difference between the two.  

Then I looked at the tuning capacitor in the Mythbuster 17-12 rig.  It came out of an old Hallicrafters transmitter, probably the HT-44.  I looked closely at the stator and the rotor plates.  Both are curved.  I'm guessing that this may yield a more constant change in capacitance for a given movement of the main tuning dial.  

Next I opened up the VFO on the Mythbuster.  (It is the VFO from an old Yaesu FT-101.)  I couldn't see the stators very well but it appears that their shape is different from the square shape we often see in variable capacitors.  Could it be that this variable capacitor was also made to provide linear tuning?  

Back in 2013 Norm Johnson wrote about all this in the Antique Radios.com forum: 

A capacitor that has uniform increase in capacitance with rotation will have the stations at the high end of the band squeezed together. Another type known as the straight-line frequency variable capacitor has, as you might guess, a characteristic that gives even spacing of frequencies with shaft rotation. These were popular in the 1920's but weren't very good for superhets where you needed to have a dual section capacitor that would tune both the RF and local oscillator, and have them track each other properly. The midline variable capacitor is more compatible with a superhet, and easier to make both sections track properly. This is the type that you see in most receivers from the late 1930's to the end of the tube era. They don't have quite the equal spacing between stations across the band that the old straight-line frequency caps had, but they're much better than the variables that change capacitance linearly with rotation.

I wrote an online calculator that helps in the design of the tuning. It shows what frequency range you'll get with a specific type of variable capacitor, including the effects of padder and trimmer capacitors. It also displays a dial scale that shows how the frequencies are lined up accross the dial.
http://electronbunker.ca/eb/BandspreadCalc.html

Steve W6SSP also provided some really good info back in 2013: 

There are three types of open, variable plate caps;
SLC= straight line capacitance where the capacitance varies linearly,
these are the most common and have half-circle plates
SLF= straight line frequency where the plates are tapered to allow
for linear tuning of the frequency
SLW= straight line wavelength, you get the idea...

SLF and SLW caps have oblong plates.

The effect on tuning a receiver can be dramatic. One example is the
Hammarlund SP series of receivers where the ham bands are very
compressed at one end of the tuning range. They used SLC caps
in the VFO. On the other hand rigs like the Kenwood TS-520
and FT-101 series have linear tuning across each band. These use
SLF variable caps. Most old 1920's battery radios used SLW
where stations were identified by their wavelength.
Steve W6SSP

These two variable caps came out of my junkbox.  Both are Eddystones, made in England.  My guess is that the one on the left is SLF.  But could the one on the right (out of an old regen) be SLW?   

The Drake 2-B also has perfectly linear tuning.  I looked at the manual:  "The tuning condenser is of special design..."   I'm guessing that they used an SLF variable capacitor. The 2-B had no need for ganged capacitors -- the "preselector" was tuned via a separate front panel control. 

I looked at the tuning dials on my Hammarlund HQ-100 receiver.   It is fairly linear in its tuning, but not as linear as the HT-37 or the Drake 2-B; on all of the tuning ranges the frequencies seem to spread out a bit at the lower end.  My guess is that Hammarlund used the midline variable described above by Norm Johnson.  The HQ-100 did use a ganged variable cap, with one section tuning the RF amplifier and the other tuning the local oscillator. 

Mythbuster on the bottom.  17-12 rig on the top


Monday, April 25, 2022

75/20 - 17/12 Two Homebrew Rigs in Scrap-Wood Boxes

 



I moved the 17/12 Rig off the workbench and placed it (as planned) atop the Mythbuster rig.  Now I have four bands easily accessible.  In these pictures you can see all four bands being displayed on the San Jian Frequency Counters. 

I found a kitchen drain screen that is an ideal cover for the 3 inch speaker in the 17/12 rig. 


I reconfigured the Low Pass filters in the CCI .1 kilowatt amplifier.  I put a 12 meter LP filter in there in place of the 40 meter LP filter (that I haven't been using much). 

I have been working a lot of DX on both 17 and 12.   

Friday, February 25, 2022

Split Stator Temperature Compensation Also Used in Yaesu FT-101


The eagle eye of VE3EAC spotted this (he also correctly pointed to a tiny broken "tine" as the cause of my  HP8640B woes).   I had missed the temp comp circuit.  Inside the Yaesu FT-101 VFO box that I used in my Mythbuster rig, there is a split stator capacitor and two temperature compensation caps similar to that recently described by Mike WU2D.  Very cool.  You can see the temp compensation cap in the picture (above). The red arrow points to the split stator cap,  the blue arrow points to to the two temperature compensation caps attached to it. You can see them all in the schematic below(in the lower left of the schematic). 

Thursday, December 30, 2021

McCoy SSB Crystal Filters (1963) -- But Apparently NOT the Real (Lew) McCoy

 
Last month we were talking about this company.  Someone thought it was run by Lew McCoy of ARRL Homebrew fame, but it now appears that our Lew McCoy was not involved in the company. 

Note how they provide TWO carrier oscillator/BFO crystals for each 9 MHz filter, one for USB, the other for LSB. 

They were pricey too:  In 2021 dollars, that Golden Guardian would cost $390. 

Thanks to the K9YA Telegraph for posting the ad. 

Friday, December 10, 2021

The Lamakaan Annual Radio Convention Starts Today!

 


The Lamakaan Amateur Radio Club's annual convention begins today in Hyderabad, India.  This is Farhan's club so it is sure to be a great event.  Presentations are being live streamed on YouTube and on the QO100 geostationary satellite. 

Here is the link to the convention: http://www.larc.in/larc4/

Pete N6QW will be the first presenter and will talk about his new PSSST Rig. He will be speaking at 0430 UTC Saturday 11 December.  That is 11:30 pm on Friday, December 10 on the East Coast of North America.  

I will be speaking at 1130 UTC on Sunday December 12.  That is 0630 Saturday 11 December EST. I'll be talking about the Mythbuster rig and about the ET-2. 

Here is the schedule.  




Here's a time zone converter: https://www.timeanddate.com/worldclock/converter.html?iso=20211211T043000&p1=505&p2=250&p3=137

Here is the Lamakaan Club's YouTube Live Channel.  https://www.youtube.com/watch?v=cRznKwGgvDo

I don't know how we might be able to watch or listen via the QO100 satellite.  The U.S. is not in the footprint of this bird.  But there is a good WEBSDR receiver run by BATC and AMSAT DL: https://eshail.batc.org.uk/

Friday, September 24, 2021

Video: N2CQR Talks About Homebrew SSB with The Vienna Wireless Society's Makers Group


It must have been great to have been a ham during the heyday of homebrew gear.  Imagine walking into your local club and finding a dozen or so people who share your passion for melting solder and homebrewing your own equipment.  Well, I got a taste of that thanks to the Vienna Wireless Society's Makers Group.  Led by Dean KK4DAS, this group of intrepid radio amateurs has built versions of Pete Juliano's Simple SSB transceiver.  They are finalizing the rigs; many are already finished.  And I could tell from the questions and the discussion that I was talking to a bunch of guys who knew which end of the soldering iron to grab.  It was really wonderful to talk to people who had gone through the experience of building an SSB transceiver, who knew from personal experience that it is not as easy as it seems. And I could tell from the questions that many of these guys are already thinking of their next projects, of how to put to use the experience they gained building Pete's SSB rig. 

Dean asked me to talk to the group about my recently completed "Mythbuster" rig.  This was a good topic for the group because my rig is similar enough to the Simple SSB that they could relate to it, but different enough that it could give them ideas about how they might do things differently next time. 

I really enjoyed this session.  I'm glad that VWS captured it on video.  I think SolderSmoke listeners and readers will like watching this video.  

Thanks to Dean KK4DAS and the VWS Makers group for hosting me.  And thanks to Jacek KW4EP for helping with the video. 

Here is the Vienna Wireless Society's YouTube Channel: 

Monday, August 30, 2021

Adding Automatic Gain Control to the Termination Insensitive Amplifier

 
Earlier this month Paul VK3HN had a very interesting blog post about adding Automatic Gain Control to Termination Insensitive Amplifiers (TIAs).  

Termination Insensitivity is especially important in bidirectional rigs.  The shape of the crystal filter bandpass response is very dependent on the impedances presented at both ends of the filter.  In bidirectional rigs you are changing the signal path direction through the filter when you go from transmit to receive.  If the amplifiers at either end of the filter have impedances that vary depending on what is on the input or output of either stage, you will have great difficulty keeping the bandpass identical as you move from transmit to receive.  Termination Insensitive Amplifiers let you do just that -- they stay at one fixed input or output impedance (usually 50 ohms) independent of what is attached to the other end of the amplifier circuit.  This greatly simplifies impedance matching at the ends of the crystal filter. 

When I started building BITX rigs, I asked Farhan about the impedance matching problem.  He advised me to use TIAs on both ends of the filter and pointed me to a great 2009 article by Wes Hayward and Bob Kopski.  Using the information from that article, I built my DIGI-TIA transceiver, and I have used TIAs in almost all of the rigs I have built since that project.   

In his August 2021 blog post, Paul wanted to add Automatic Gain Control to the TIAs. He came up with a way to do this, but we worried that his circuit would have an impact on the impedance of the amplifiers. 

Yesterday, Wes Hayward W7ZOI posted on his web site a TIA circuit that lets us do it all:  Termination Insensitivity with Automatic Gain Control: 


I now find myself tempted to rebuild one of the TIA stages in my Mythbuster transceiver, adding the AGC circuitry from Wes's design. 

Thanks to Paul VK3HN for the blog post on this subject. And thanks to Wes Hayward for the TIA AGC design.  It is a real privilege to have direct input from Wes on questions like this. 

Friday, August 27, 2021

SolderSmoke Podcast #232 -- Mythbuster, Pete's Tube CW Rig, Pete's DC RX and Simple SSB Rig, NanoVNA and TinySA, Very FB Mailbag


SolderSmoke Podcast #232 is available -- Crank it in Robert!


Featuring a guitar intro by Pete "Bluesman" Juliano,  playing his own composition: "Juliano Blues." 

Upcoming GQRP convention and the N6QW rig
Frank Jones and the FMLA -- Possible Victory?
IBEW Stickers:  NASA, Johns Hopkins APL....
Cycle 25 Lookin Better Today:  SFI 93   SN 47
 
Pete's Bench:
Toobular!  A Tube Transmitter
SR-160
Simple SSB rigs around the world! 
KI7NSS's Pacific 40
 
Bill's Bench
The Mythbuster and the Struggle Against the Urban Legend
W2EWL's Cheap and Easy SSB
W4IMP's IMP. Articles in ER by Jim Musgrove K5BZH and Jim Hanlon W8KGI
The Spirit of Homebrew SSB. From Electric Radio K5BZH December 1991
Reduced Front End Gain on the DIGITIA
Back on 17!  HP3SS sells HBR receiver to Joe Walsh
Maybe another Moxon?
 
SHAMELESS COMMERCE DIVISION
 
Test Gear
NanoVNA -- Alan W2AEW helped solve mystery of why NanoVNA not providing accurate readout of circuit impedance.  Over driving.  Need attenuator. 
TinySA -- Limited Resolution Bandwidth.  But you can listen with it!  See video on blog.
 
MAILBAG
-- Google Feedburner to end e-mails from the blog :-(
-- Paul VK3HN -- TIA AGC? Farhan and Paul looking into options 
-- Ciprian's Romanian Mighty Mite
-- Dino KL0S SolderSmoke GIF and graphical presentation on sideband inversion
-- Allison KB1GMX helped me on 24 volts to IRF 510 issue.
-- Dave K8WPE Wabi Sabi and Martha Stewart. And thanks for parts!  40673s!
-- Steve N8NM building a 17 meter rig with 22.1184 crystals in a SuperVXO and a 4 MHz filter.  
-- Dean KK4DAS restoring an old Zenith.  One hand behind your back OM. 
-- Pete Eaton debating SSB or DSB for 17.  Go DSB Pete!
-- Richard KN7FSZ a FB HBer.  Asked about my solid-stating of Galaxy V VFO.  
-- Walter KA4KXX on benefits of no-tune BP filters like Farhan's   FB. 
-- Jack 5B4APL on Time Crystals and Homebrewing in the 4th dimension.  FB OM!  
-- Moses K8TIY listens to the podcast with his young son Robert.  Crank it in Robert! 
-- Farhan and the SBitx on Hack-A-Day
-- Also Tom's receiver from junked satellite rig on Hack-A-Day
-- Todd K7TFC sent in beautiful message about the spirit of homebrewing. On the blog.
-- Grayson KJ7UM was on Ham Radio Workbench with George Zaf
-- AAron K5ATG running a uBitx with a  homebrew tuner and antenna.  Hope I can work him 
-- Heard Mike WA3O last night on 40 DIGITIA.  Water cooled amplifier

Tuesday, August 24, 2021

Mythbuster Video #17 Boxing it Up, Tuning Filters, Tapping a Heat Sink, QRO Dreams....


I made a cabinet out of scrap packing material. I show how I tune LC filters by squeezing the turns on toroidal inductors. I tap a heatsink and think about more power for the Mythbuster.

Saturday, August 21, 2021

W2EWL's "Cheap and Easy SSB" Rig -- And The LSB/USB Convention Myth


In March 1956 Tony Vitale published in QST an article about a "Cheap and Easy" SSB transmitter that he had built around the VFO in an ARC-5 Command Set transmitter.  Vitale added a 9 MHz crystal-controlled oscillator,  and around this built a simple phasing generator that produced SSB at 9 MHz.  He then made excellent use of the ARC-5's stable 5 - 5.5 MHz VFO.  His rig covered both 75 meters and 20 meters.  Here is the article:

http://nebula.wsimg.com/2b13ac174f7f2710ca2460f8cf7d6b8b?AccessKeyId=D18ED10DA019A4588B7B&disposition=0&alloworigin=1

Because it used the 9 and 5 frequency scheme, over the years many, many hams have come to think that Vitale's rig is the source of the current "LSB below 10 MHz, USB above 10 MHz." This is  wrong.   An example of this error popped up on YouTube just this week (the video is otherwise excellent): 


First, Vitale's rig had a phasing SSB generator. All you would need to switch from USB to LSB was a simple switch.  And indeed Vitale's rig had such a switch. Pictures of other Cheap and Easy transmitters all show an SSB selection switch. So with a flip of the switch you could have been on either USB or LSB on both 75 and 20.  With this rig, you didn't even need sideband inversion to get you to 75 LSB and 20 USB. 

Second, even if hams somehow became so frugal that they wanted to save the expense of the switch, leaving the switch out (as suggested above) would NOT yield the desired "75 LSB 20 USB" that the urban legend claims that W2EWL.   As we have been pointing out, a 9 MHz SSB generator paired with a 5 MHz VFO (as in the Vitale rig) will NOT -- through sideband inversion -- yield LSB on one band but USB on the other.   

W2EWL's rig could not have been the source of the LSB/USB convention.  I still don't know where the convention came from. I am still looking for the source. 

But leaving the LSB/USB convention issue aside, Tony Vitale's rig is an excellent example of early SSB homebrewing, and of a very clever use of war surplus material.  In the January 1992 issue of Electric Radio magazine, Jim Musgrove K5BZH writes of his conversations with Vitale about the Cheap and Easy SSB.  Tony told Jim that this rig came about because the Central Electronics exciters required an external VFO -- they recommended a modified BC458.   B&W had recently come out with a phase shift network. Vitale went ahead and built the whole rig inside a BC458 box.  FB Tony! 

In the December 1991 Electric Radio, Jim K5BZH reports that Tony was recruited into the ranks of SSBers when he watched a demonstration of SSB by Bob Ehrlich W2NJR in November 1950. Tony very quickly started churning out SSB rigs.  His daughter Trish Taglairino recounted that when her father had "done something great again" there would be a parade of hams to the basement shack.  About 30 guys showed up when Tony put his first SSB rig on the air -- they sent out for beer.  

Thanks to Jim for preserving so much SSB history. 

Tuesday, August 10, 2021

Mythbuster Video #16 -- GLOWING NUMERALS! In Juliano Blue!

I added two San Jian frequency counters to the front panel. In addition to making the rig a lot easier to operate, they add a classy touch of Juliano Blue to the project.

I got my counters here: https://www.ebay.com/itm/224223678132

There is a limitation of some of the the San Jian counters: https://soldersmoke.blogspot.com/2021/02/a-problem-with-san-jian-plj6-led-counter.html

But this limitation didn't cause any problem with this rig:  In this case I just plugged in the IF frequency of 5.2397 MHz.  I connected the input to my VFO running around 9 MHz.  For 20 meter signals, I select the "up" option;  the San JIan counter just adds the IF frequency to the VFO Frequency.  For example 9 + 5.2397 = 14.2397 MHz .   For 75, I select the "down" option.  Here the San Jian just subtracts the IF frequency from the VFO frequency -- for example 9 - 5.2397 = 3.7603 MHz.  

The band select switch operates relays that select the proper band-pass and low-pass filters.  This switch also alternatively turns on either the 20 meter San Jian or the 75 meter San Jian. 

Monday, August 9, 2021

Mythbuster Video #15 The Mythbuster Signal As Seen in the NA5B WebSDR


Mehmet NA5B has an excellent WedSDR receiver in Washington D.C., about 9 miles east of me. I often use it to check my signal quality. I think this video shows that the 10 pole crystal filter is working and is producing a signal with very sharp drop-off outside the 2.7 kHz passband. You should focus your attention to the passband (yellow vertical lines) near 3895 kHz. That's me.

Once, when I was describing my 40 meter DIGI-TIA to an SDR guy, he seemed surprised that I was using a -- gasp -- crystal filter. "Your skirts must be atrocious!" he said. My HDR sensibilities were deeply offended.

I had hoped that the 10 pole crystal filter would produce skirts so nearly vertical as to make my signal indistinguishable (in the waterfalls) from the SDR signals. At least at this low signal level, it appears to be working.

Sunday, August 8, 2021

Mythbuster Video #14 -- ON THE AIR!

On August 5 I put the Mythbuster on the air, making QSOs on both 75 and 20 meters. This video is from the following day -- I was on 75 meters. My first QSO with this rig was on 20 with S57DX. That was a good omen. TRGHS

I had no feedback or spur problems with the BITX40 module amplifier circuit. And I didn't release any IRF510 smoke. There is, of course, a lot more output on 75 than on 20. That's just the nature of the IRF510. I get about 4 watts out on 20 and about 9 watts out on 75 (with a 12 volt supply). At Pete's suggestion I might replace the IRF510 with a Mitsubishi RD06HHF1.

I had a couple of minor problems getting the transmitter going. I will describe these in a future video.


Saturday, August 7, 2021

Mythbuster Video #13 -- RF Power Amplifier, and Relay Switching Plan


In this episode we enter into the most fraught part of the construction project: the production of RF power. This is where amplifiers stubbornly turn into oscillators, and where components release magic smoke, or at least burn the fingers of hopeful builders.

I kind of ran out of room when I built the low-pass filters. But, thinking ahead, I wanted to have them on a separate board. And it is good that they ended up in the far corner of the rig.

Just going from one band to two bands adds to the complexity of the rig. I had to add two relays, one to switch the low pass filters, the other to switch the bandpass filters. I ended up with 5 DPDT relays in this transceiver. It was very helpful to have a plan and a diagram for the relays and all the switching.

It looks like each of the three RF amplifier stages provides about 15 db of gain -- about what I need to get to the 5 watt level.

Monday, August 2, 2021

Mythbuster Video #12 -- Bandpass Filters


The really cool part comes at the end when I put the scope probe on the output, then on the input of the bandpass filter.  Exciting stuff my friends! 

Sunday, August 1, 2021

Mythbuster Video #11 -- Block Diagram and Overview of the Transmitter Circuits


Much of the transmitter is now done. This video looks at the circuitry and how it all fits together.
Designer: Douglas Bowman | Dimodifikasi oleh Abdul Munir Original Posting Rounders 3 Column